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Motivation: topological strings

Toric CY 3-fold M
Mirror Symmetry

ρM (trace class operator)

The spectrum of ρM is expected to be related to enumerative
invariants of M through the topological string partition functions.
Suggested by Aganagic–Dijkgraaf–Klemm–Mariño–Vafa (2006)
and materialized by Grassi–Hatsuda–Mariño (2016).
Example: the local P1 × P1 or F0

ρ−1 = ρ−1F0,m
= v + v−1 + u + mu−1, m ∈ R>0,

with positive self-adjoint operators u and v satisfying the
Heisenberg–Weyl commutation relation uv = e i~vu, ~ ∈ R>0.

Rinat Kashaev The spectral problem of the modular oscillator. . .



Implications of the Grassi–Hatsuda–Mariño conjecture

Fredholm determinant

det(1 + κρ) = 1 +
∞∑

N=1

Z (N, ~)κN (convergent series)

where the fermionic spectral traces Z (N, ~) = eF (N,~) provide a
non-perturbative definition of the topological string partition
functions.

~→∞, N →∞, with fixed λ :=
~
N

(t’Hooft limit)

F (N, ~) '
∞∑
g=0

Fg (λ)~2−2g (asymptotic series)

with the genus g standard topological string free energies Fg (λ) in
the conifold frame where λ is a flat coordinate for the CY moduli
space vanishing at the conifold point.
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Statement of the problem

For b ∈ C 6=0, define operators in L2(R)

u := e2πbx , v := e2πbp, ū := e2πb
−1x , v̄ := e2πb

−1p .

with Heisenberg operators

xψ(x) = xψ(x), pψ(x) = (2πi)−1ψ′(x).

Spectral problem for two Hamiltonians

H := v + v−1 + u + u−1, H̄ := v̄ + v̄−1 + ū + ū−1

which (formally) commute (Faddeev’s modular duality).
Strongly coupled regime

b = eiθ, 0 < θ <
π

2
⇒ H̄ = H∗ (Hermitian conjugate).

Small b limit

H = 4 + (2πb)2(p2 + x2) +O(b4) (“modular oscillator”).
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Functional difference equations

The common spectral problem for H and H̄ is equivalent to
constructing an element ψ(x) ∈ L2(R) admitting analytic
continuation to a domain containing the strip
|=z | ≤ max(<b,<b−1), satisfying the functional difference
equations

ψ(x + ib) + ψ(x − ib) = (ε− 2 cosh(2πbx))ψ(x),

ψ(x + ib−1) + ψ(x − ib−1) = (ε̄− 2 cosh(2πb−1x))ψ(x),

and the restrictions ψ(x + iλ) being elements of L2(R), where
λ ∈ {<b,−<b,<b−1,−<b−1}.
In the general case of Baxter’s T − Q equations, an approach for
constructing the solution in the strongly coupled regime is
suggested by S. Sergeev (2005).
A different approach through auxiliary non-linear integral equations
is developed by O. Babelon, K. Kozlowski, V. Pasquier (2018).

Rinat Kashaev The spectral problem of the modular oscillator. . .



Behavior at infinity

In the limit x → −∞, equation

ψ(x + ib) + ψ(x − ib) = (ε− 2 cosh(2πbx))ψ(x)

is approximated by the equation

ψ(x + ib) + ψ(x − ib) = − e−2πbx ψ(x),

where, in the left hand side, any one of the two terms can be
dominating giving rise to two possible asymtotics

ψ(x)|x→−∞ ∼ e±iπx
2+2πηx , η :=

b + b−1

2
= cos θ.

Thus, there are two solutions of the form

ψ±(x) = e±iπx
2+2πηx φ±(x), φ±(x)|x→−∞ = O(1).

Thus, a general exponentially decaying at x → −∞ solution is of
the form

ψ(x) = e2πηx
(

eiπx
2
φ+(x) + e−iπx

2
φ−(x)

)
.

Rinat Kashaev The spectral problem of the modular oscillator. . .



The factorization ansatz

We look for solutions of the form

ψ±(x) = e±iπx
2+2πηx φ±(x)

with

φ+(x) = f
(
eπib

2
, ε, e2πbx

)
f
(
e−πib2 , ε, e2πbx

)
, φ−(x) = αφ+(x),

where α ∈ C and

f (q, ε, u) =
∞∑
n=0

cn(q, ε)un

solves the functional equation

f
(
q, ε, uq−2

)
+ q2u2f (q, ε, q2u) = (1− εu + u2)f (q, ε, u).
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The main functional equation

f
(
u/q2

)
+ q2u2f (q2u) = (1− εu + u2)f (u), q := eπib

2
.

Involution in the space of solutions: f (u) 7→ f̌ (u) := u−1f
(
u−1

)
.

An equivalent first order difference matrix equation(
f
(
u/q2

)
f (u)

)
= L(u)

(
f (u)
f (q2u)

)
, L(u) :=

(
1− εu + u2 −q2u2

1 0

)
(

f
(
u/q2

)
f (u)

)
= Mn(u)

(
f
(
q2n−2u

)
f (q2nu)

)
, ∀n ∈ Z>0,

Mn(u) := L(u)L(q2u) · · · L(q2(n−1)u), M∞(u) =

(
χq

(
u/q2

)
0

χq(u) 0

)
,

where χq(u) = χq(u, ε) is an entire function of u ∈ C normalised
so that χq(0) = 1 and which solves the main functional equation.
The second solution χ̌q(u) := u−1χq(u−1) leads to a non-zero
Wronskian [χq, χ̌q](u) := χq

(
q−2u

)
χ̌q(u)− χ̌q

(
q−2u

)
χq(u).
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Orthogonal polynomials associated to χq(u, ε)

χq(u, ε) =
∑
n≥0

χq,n(ε)

(q−2; q−2)n
un =

∑
n≥0

(−1)nqn(n+1) χq,n(ε)

(q2; q2)n
un .

with polynomials χq,n(ε) ∈ C[ε] satisfying the recurrence relation

χq,0(ε) = 1 , χq,n+1(ε) = εχq,n(ε) + (qn − q−n)2χq,n−1(ε),

with few first polynomials

χq,1(ε) = ε, χq,2(ε) = ε2 + (q − q−1)2,

χq,3(ε) = ε(ε2 + (q2 − q−2)2 + (q − q−1)2), . . .

Multiplication rule

χq,m(ε)χq,n(ε)

=

min(m,n)∑
k=0

(q2m; q−2)k(q2n; q−2)k(q2(k−m−n); q2)k
(q2; q2)k

χq,m+n−2k(ε)
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The main functional equation with q replaced by q−1

f (q2u) +
u2

q2
f

(
u

q2

)
= (1− εu + u2)f (u).

There is no solution regular at u = 0. The series

χq−1(u, ε) '
∑
n≥0

χq,n(ε)

(q2; q2)n
un

does not converge, it is only an asymptotic expansion of the true
solution

χq−1(u, ε) :=
χ̌q(u, ε)

[χq, χ̌q](u)
.
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Result for the eigenfunction

ψ(x) := b−1 eπiσ
2−ξπi/4 e2πηx+iπx2 χ̌q(u)χq(u) + ξχq(u)χ̌q(u)

θ1(su, q)θ1(s−1u, q)
.

where

[χq, χ̌q](u) = %θ1(su, q)θ1(s−1u, q),

θ1(u, q) :=
1

i

∑
n∈Z

(−1)nq(n+1/2)2un+1/2,

with certain functions s = s(ε, q), % = %(ε, q), s := e2πbσ, and the
variable ξ ∈ {±1} is the parity of the eigenstate: ψ(−x) = ξψ(x).
The function is real ψ(x) = ψ(x) (thus modular invariant
b↔ b−1) and exponentially decays at both infinities

|ψ(x)| ∼ e−2πη|x |, x → ±∞.
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Quantization condition for the eigenvalues

The quantization condition is the analyticity condition for ψ(x)
with complex x in the strip

Sb :=
{
z ∈ C | |=z | < max(|<b|, |<b−1|)

}
.

Define

Gq(u, ε) :=
χq(u, ε)

χ̌q(u, ε)
, Gq(u, ε)Gq(1/u, ε) = 1, ∀u ∈ C6=0.

Theorem

Let ε = ε(σ) be such that [χq, χ̌q](u) = %θ1(su)θ1(s−1u) for any

u ∈ C, and assume that s 6∈ ±qZ (recall that s = s(σ) = e2πbσ).
Then the eigenfunction ψ(x) does not have poles in the strip Sb if
the variable σ is such that Gq(s, ε) = −ξGq(s, ε). Moreover, in
that case, ψ(x) is an entire function on C.
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