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@ Ooguri-Vafa M-theory system:
Spacetime |

Resolved conifold
M5 brane | Lagrangian submanifold Lx x R

X R1’4
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@ Topological strings <+ Chern-Simons theory <>
<> Knot theory [Witten]

e Partition function=HOMFLY-PT gen. series

Z=PK(x,a,q) = ) PK(a,q)x"
r=0

M5 brane ‘ Lagrangian submanifold Lk
M2 branes ‘

Holomorphic curves
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<> Knot theory [Witten]

@ Partition function=HOMFLY-PT gen. series

oo
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Summary Knots-quivers correspondence

Calabi-Yau side (resolved conifold)

@ Topological strings <+ Chern-Simons theory <>
<> Knot theory [Witten]

nnnnnnn

@ Partition function=HOMFLY-PT gen. series

oo

Z=PK(x,a,9) = Z PX(a,q)x"
r=0 |

M5 brane ‘ Lagrangian submanifold Lk
M2 branes ‘ Holomorphic curves

Stura- Cexger vl (30900
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o T[Lk]: 3d 4" =2 eff. theory on R1?2

@ Partition function=generating function of

Labastida-Marifio-Ooguri-Vafa invariants N

r,"NK- -Xrai '
Z =Exp (Z o qj)

1— g2

7
7
M5 brane ‘ R12 o
M2 branes ‘ BPS states
@ BPS states are counted by LMQV invariants =
LMOV integrality conjecture
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o T[Lk]: 3d 4" =2 eff. theory on R1?2

@ Partition function=generating function of

Labastida-Marifio-Ooguri-Vafa invariants N

K. .
ryyJ
Z J _NK_ _Xraiqj
Z:Exp( "Jlil;jqz
M5 brane ‘ RL2

M2 branes ‘ BPS states

BPS states are counted by LMQV invariants =
LMOV integrality conjecture
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o T[Lk]: 3d 4" =2 eff. theory on R1?2

@ Partition function=generating function of

Labastida-Marifio-Ooguri-Vafa invariants N

K. .
rij
M5 brane | R12
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Introduction Knots
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Summary Knots-quivers correspondence
Flat side (R1#)

o T[Lk]: 3d A4 =2 eff. theory on R1?2

@ Partition function=generating function of

Labastida-Marifio-Ooguri-Vafa invariants Nf,-’j
p .
1—gq L
M5 brane ‘ R12 h

M2 branes ‘ BPS states

@ BPS states are counted by LMOV invariants =
LMOV integrality conjecture
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@ Quiver Q = (Qp, @1)

e () is a set of vertices

vertices i and j

e @ is a set of arrows between them (loops allowed)
e Matrix form: Cj; gives the number of arrows between

o If Cjj = Cj;i we call the quiver symmetric

. . 2 O
@ Quiver representations:

(Qo, Q1) — (Vector spaces, Linear maps)
e Example from the picture:

o QO o {12}

» vector spaces Vq and V5 of dimensions
di and d> (dimension vector d = (dy, d>))
o @ ={1—1} — linear map V4, — V4
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@ Quiver Q = (Qp, @1)

e () is a set of vertices

vertices i and j

e @ is a set of arrows between them (loops allowed)
e Matrix form: Cj; gives the number of arrows between

If Cjj = Cji we call the quiver symmetric
Quiver representations:

(Qo, Q1) — (Vector spaces, Linear maps)

2
Example from the picture:
Qo = {1,2}

[ 0 0 ]
vector spaces V7 and V5> of dimensions
d1 and d> (dimension vector d = (dy, d>))
@ ={1— 1} — linear map V; — V;
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@ Quiver Q = (Qp, @1)

e (@ is a set of vertices

vertices i and j

e @ is a set of arrows between them (loops allowed)
e Matrix form: Cj; gives the number of arrows between

o If Cj = Cji we call the quiver symmetric

«40>» «F»r» « =)»

<

it
-

DA



Introduction Knots
Physics and geometry of KQ correspondence Quivers
Summary Knots-quivers correspondence

Quivers

e Quiver Q =(Qo, )

e () is a set of vertices
e @ is a set of arrows between them (loops allowed)

e Matrix form: Cj; gives the number of arrows between
vertices i and j 1

o If Cjj = Cji we call the quiver symmetric

@ Quiver representations:
(Qo, Q1) — (Vector spaces, Linear maps)
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Quivers

e Quiver Q =(Qo, )

e () is a set of vertices
e @ is a set of arrows between them (loops allowed)

e Matrix form: Cj; gives the number of arrows between
vertices i and j 1
o If Cjj = Cji we call the quiver symmetric
. : 2 O
@ Quiver representations:
(Qo, Q1) — (Vector spaces, Linear maps)
ool
@ Example from the picture: 00

o Q ={1,2} — vector spaces V4 and V, of dimensions
di and d> (dimension vector d = (dy,d>))
o Q1 ={1—1} — linear map V; — V;
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Motivic generating series and DT invariants

@ Motivic generating series encodes information about
moduli spaces of representations of Q

|Qo| i

PQ(X7q): Z ( q)21<ld<\Qo\Cled H72)
d1,..,d|Qy |20 i=1 q q°)d .
Qe
:EXP< (X,q)>

1—¢q?
2 0
o Q9(x,q) is a generating function of motivic
Donaldson-Thomas (DT) invariants { 10
e Exp is the plethystic exponential 00

Exp (x"a'¢/) =(1—x"a'¢/)!
Exp(f +g) =Exp(f)Exp(g)

P. Kucharski Physics and geometry of KQ correspondence
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Knots
Quivers
Knots-quivers correspondence

Motivic generating series and DT invariants

@ Motivic generating series encodes information about
moduli spaces of representations of @

| Qo d;

PQ(X, q) = Z ( q)21<u<\Qo\ Gijdid; H Xi 5
d1»~~7d\Q0\20 i=1 q q )d' @
1
Qe
=Exp <(X’f))
l—q
2 0
o Q9(x,q) is a generating function of motivic
Donaldson-Thomas (DT) invariants [ 10
e (g% g?)q; is the g-Pochhammer symbol 00

r—1

() =[[(1-2¢*)=(1-2) (1 - 2¢%) ... (1—zg*" D))

i=0
P. Kucharski
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Motivic generating series and DT invariants

@ Motivic generating series encodes information about
moduli spaces of representations of @

| Qo Xidi

PQ(x,q) = Z (_q)):lgiJg\Qo\ G jdid; H ( - 2)
d1.,...,d\Q0\20 =1 q 'q d,- @
1
[01%
:Exp< (X,q)>

1—q?

2. 0
@ Example from the picture

10

dy d
X X.
'DQ(XI,XLq) = (—Cl)d12 L 2 [ 00
dlgzo (a%6%)a, (9%6%)d,

—qx1+x2
—E 7 e
P ( 1-gq? >
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e Knots-quivers (KQ) correspondence is an equality

PK(X, a,q) = =187 (x,q)

xi=a% q9i~Cii x
o PX(x,a,q) — HOMFLY-PT generating series of knot K
o x; = a%iq9 G

o P®K(x,q) — motivic generating series of respective quiver Qx
iix is a change of variables
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e Knots-quivers (KQ) correspondence is an equality

PK(X, a,q) = =187 (x,q)

xi=a% q9i~Cii x

o PK(x,a,q) — HOMFLY-PT generating series of knot K
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e Knots-quivers (KQ) correspondence is an equality

PK(X, a,q) = =187 (x,q)

x;=a% qqifc'

i x
o PK(x,a,q) — HOMFLY-PT generating series of knot K
e PCK(x,q) — motivic generating series of respective quiver Qx
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e Knots-quivers (KQ) correspondence is an equality

PK(X, a,q) = =187 (x,q)

x;=a% qqifc'

i x
o PK(x,a,q) — HOMFLY-PT generating series of knot K
e PCK(x,q) — motivic generating series of respective quiver Qx
o x;=a%q% Cix is a change of variables
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oo

P01(x,a,q) _ Z (32;‘72), r

P01 (x1,x2,q) = Z (_q)dlz

X
r=0 (q2;q2)r

1— 32
et
l1—gq
o .
X]. X2
di,d2>0

(6%:6%) a4, (4% 9%)a,
—agxi +X2
1—

+..
q2
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o We can check that

1+1—32 .
— X+
1—q2

Comparing with x; = a% g9~

(81,82) - (20)

P% (x,a,q) = P%1(x1,x2,q)

G

iix we get

x1=a2q 1x, xo=x
—gx1+x2

1_q2 +-.

x1=a2q 1x, xo=x

(g1,92) = (0,0)
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o We can check that

1+1—32 n
—x+.
1—-q?

1—g?
o Comparing with x; = a% g%~

G

x1=a2q 1x, xa=x
ix we get
(31,32) = (270) (q17q2) = (070)
«0O0» «Fr «=» « > Q>
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POl(X’a7q) = PQOI (Xl’X2aq)

x1=a2q 1x, xa=x
—gx1+x2

+..




@ We can also look at the level of BPS states:
NK
EXp ( (X? a7 q)

1-¢?

115%
«0O0» «Fr «=» « > Q>

):PK=PW=E@<

QW@M»

1-¢?
N (x,a,q) = Q9(x,q)

x;=a% qqi’Ciix
x;=a% qq,-—C
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KQ correspondence and BPS states

N 0
/ 2 O

@ We can also look at the level of BPS states:

K Q
Exp(N (x,a,q)> _ K _ pQk _ EXp(Q K(x,q)>

1— g2 1— g2

xi=a% q9i~Cii x

NK(x,a,q) = Q%(x,q)

x;=a% q9i~Cii x

@ Integrality of DT invariants for symmetric quivers
[Kontsevich-Soibelman, Efimov] implies LMOV conjecture

P. Kucharski Physics and geometry of KQ correspondence
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Math

Physics

Knots
HOMFLY-PT gen. series

\)

@)H

Quivers

—  Motivic gen. series
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Physics
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Knots Quivers
Math | HOMFLY-PT gen. series —  Motivic gen. series
4 4
Physics 3d A/ =2 T[Lk] —  3d A =2 T[Qk]
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Geometric interpretations

a

Knots Quivers

Math | HOMFLY-PT gen. series Motivic gen. series
N /

Geometric interpretations

e N\
Physics 3d A =2 T[Lk] 3d A =2 T[QK]

P. Kucharski Physics and geometry of KQ correspondence
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Introduction General idea
Physics and geometry of KQ correspondence Physics
Summary Geometry

Construction of knot complement theory

@ We can construct 3d .#” = 2 knot complement theory T[M]
basing on large colour and classical limit of HOMFLY-PT
polynomial [Fuji, Gukov, Sutkowski]

K Ai—0 1 e
PE(a.0) 223 o0 |35 (Frum +0(h)|

° %—[MK] is a twisted superpotential

Lis(...) «— chiral field

glog(. ..)log(...) +— CS coupling

[m]

P. Kucharski Physics and geometry of KQ correspondence
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Recall: what is T[Lk]

T[Lk]: 3d A =2 eff. theory on R}2

@ Partition function=generating function of
Labastida-Marino-Ooguri-Vafa invariants Nf,-’j
Y, NK xralg/ )
1—¢g 7
M5 brane |  R!? o

M2 branes ‘ BPS states

@ BPS states are counted by LMOV invariants =
LMOV integrality conjecture

P. Kucharski Physics and geometry of KQ correspondence



Introduction General idea
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Recall: what is T[Lk]

T[Lk]: 3d A =2 eff. theory on R}2

@ Partition function=generating function of
Labastida-Marino-Ooguri-Vafa invariants N:.(,i,j
Y, NK xralg/
Z =Exp | =Y
1— q2 it
M5 brane |  R!? ™

M2 branes ‘ BPS states

@ BPS states are counted by LMOV invariants =
LMOV integrality conjecture

P. Kucharski Physics and geometry of KQ correspondence



We construct T[Lk] analogously to T[Mk], but using PX(x,a,q)

v/ v -
//T[LK] = //T[MK] -+ |OgX|Ogy

@ Integral [ dy means that U(1) symmetry
. . . “~
corresponding to fugacity y is gauged

@ We have the same matter content with just
extra CS coupling with background field
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We construct T[Lk] analogously to T[M], but using PX(x, a,q)

K
P"(x,a,q) —> /dyexp [2h <WT[LK]+O(h))}
V1L = WT[MK] +log xlogy
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We construct T[Lk] analogously to T[M], but using PX(x, a,q)

K
P"(x,a,q) —> /dyexp [2)’? <WT[LK]+O(h))}
V1L = WT[MK] +log xlogy

o Integral [ dy means that U(1) symmetry
corresponding to fugacity y is gauged
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Introduction General idea

Physics and geometry of KQ correspondence Physics
Summary Geometry

Construction of T[Lk] theory

Idea
We construct T[Lk] analogously to T[Mk], but using PX(x, a,q)

K hi—
P"(x,a,q) —> dyexp[z,7 (WT[LK]"i’O(h))]

g% —y

YTk = WT[MK] +log xlogy
o Integral [ dy means that U(1) symmetry

corresponding to fugacity y is gauged

@ We have the same matter content with just
extra CS coupling with background field

P. Kucharski Physics and geometry of KQ correspondence



@ For the unknot we have

Pol(X a,q) —> /dyexp [ 7 (WT[LO ]+O(ﬁ))]
WT[Lol] = L12 (v)+Liz (y~

~2) +logxlogy

@ T[Lo,] is a U(1) gauge theory (fugacity y) with one
fundamental and one antifundamental chiral

e Antifundamental chiral is charged under the U(1), global
symmetry arising from S2 in the conifold
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@ For the unknot we have

Pol(x a,q) —> /dyexp[ 7 (WT[LO ]-i-O(ﬁ))]
Wltey) = le () +Liz (y~

~2) +logxlogy

e T[Lo,] is a U(1) gauge theory (fugacity y) with one
fundamental and one antifundamental chiral
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Introduction General idea
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Example: T[Lo,]

@ For the unknot we have

r‘}y

P%(x,a,q) L dyexp[ 5 (WT[LO ]+O(h)>]

%[Lol] = Li2 (y) +Liz ()/7 a ) +logxlogy

urce utidla_crg

@ T[Lo,] is a U(1) gauge theory (fugacity y) with one
fundamental and one antifundamental chiral

e Antifundamental chiral is charged under the U(1), global
symmetry arising from S? in the conifold

P. Kucharski Physics and geometry of KQ correspondence
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3d A4 =2 T[Qk]
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Consider large colour and classical limit of motivic generating series!




Consider large colour and classical limit of motivic generating series! I

PO (x,q) "9 / delexp {2,7 (WT[QK1+O(’7)>]

q*¥i—y;

WT[QK] = Z [Liz (yi) + log xi log yi] + Z % log yilogy;,
1 IJ




Consider large colour and classical limit of motivic generating series! I

PO (x,q) 9 / de,exp {2,7 (Wr[QKJJr O(h)>]

q*¥i—y;

WT[QK] = Z [Liz (yi) + log xi log yi] + Z % log yilogy;,
1 IJ

o Gauge group: U(1)#vertices
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Missing element: T[Qk] theory

Idea
Consider large colour and classical limit of motivic generating series!J

PO (x,q) 9 / de, exp[ (WT[QKI + OW)]

q*i—yi

P71k = YL ILi2 (i) +log xilog yi] + ) —2"’ log yilog y;,
i ij
e Gauge group: U(1)#vertices

@ Matter content: one chiral for each vertex

P. Kucharski Physics and geometry of KQ correspondence



Introduction General idea
Physics and geometry of KQ correspondence Physics
Summary Geometry

Missing element: T[Qk] theory

Idea
Consider large colour and classical limit of motivic generating series!J

PO (x,q) 9 / de, exp[ (WT[QKI + OW)]

q*i—yi

P71k = YL ILi2 (i) +log xilog yi] + ) —2"’ log yilog y;,
i ij
e Gauge group: U(1)#vertices

@ Matter content: one chiral for each vertex

@ CS couplings given by C;; = #arrows

[m]

P. Kucharski Physics and geometry of KQ correspondence



o For the unknot quiver we have

pQo; (x1,x2,9) —) dyy dys exp [2ﬁ (WT[Qol] + O(ﬁ))]
q*i—y;

W71Qo,] = Li2 (y1) +Liz (y2) +log x1 log y1 +log x2 log y2 + = log y1 log y1

e

40> «F»r «=» «E=)»
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Introduction General idea
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Summary Geometry
Example: T[Qo,]

@ For the unknot quiver we have

P01 (x1,x2,q) 2—> dy1dys exp { p (WT[QOI] + O(h))}
>y

_ ' ' 1
771o,] = Liz (y1) +Li2 (y2) +log x1 log y1 +log x2 log y2 + 5 log y1 log y1

o T[Qo,]isa U(1)M x U(1)D gauge
theory with one chiral field for each group

2.0

P. Kucharski Physics and geometry of KQ correspondence



Introduction General idea
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Summary Geometry
Example: T[Qo,]

@ For the unknot quiver we have
P01 (x1,x2,q) P29 [ dyrdysexp { p (WT[QOI] + O(h))}
q*i—y;

_ ' ' 1
771o,] = Liz (y1) +Li2 (y2) +log x1 log y1 +log x2 log y2 + 5 log y1 log y1

o T[Qo,]isa U(1)M x U(1)D gauge
theory with one chiral field for each group

o CS level one for U(1)(}), consistent with

10
01 _
“=lo 3]

2.0
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We want the physical interpretation of KQ correspondence

‘ Knots Quivers
Math | HOMFLY-PT gen. series —  Motivic gen. series
\: \

Physics 3d A4 =2 T[Lk] —  3d A/ =2 T[Qk]
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General idea
Physics
Geometry

@ Physical meaning of the
knots-quivers correspondence is
a duality between two
3d A =2 theories:

P. Kucharski
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Duality

@ Physical meaning of the
knots-quivers correspondence is
a duality between two
3d A =2 theories:

@ We already know that
Z(T[Lk]) = P"(x,a,9)
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Duality

@ Physical meaning of the
knots-quivers correspondence is
a duality between two
3d A =2 theories:

@ We already know that
Z(T[Lk]) = P"(x,a.q)

@ We can calculate the partition function of T[Qk] and indeed
Z(T[Qk]) = P¥*(x,q)

P. Kucharski Physics and geometry of KQ correspondence
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@ Let's look at motivic generating series
restricted to |d| =1

_ CiiXI.
P|§|K=1(XaQ): )y (=9)

2
i€Qo l1-q

@ ©
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@ Let's look at motivic generating series
restricted to |d| =1
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Quiver nodes extracted from motivic generating series

@ Let's look at motivic generating series
restricted to |d| =1

C
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P\d|K:1(X7q) = 2, 1-q2 @
i€Qo

@ Every vertex (i € Qo) contributes once @ Q@

@ No interactions between different nodes
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Quiver nodes extracted from motivic generating series

@ Let's look at motivic generating series
restricted to |d| =1

C
Q _ v (Fa9)"ix
P‘d|":1(x,q)— 2, 1-q2 @
i€Qo

@ Every vertex (i € Qo) contributes once @ Q@

@ No interactions between different nodes

@ What is the meaning of P|§|K:1(X’q)?
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@ Let's apply KQ change of variables

Q _ pK
Plal<a (% q)‘xl_:aa,. g G — 1 (20)

e Pl(a,q) is an Euler characteristic of HOMFLY-PT
homology 7 (K) with set of generators ¢(K), so

 Yiew(k) aa’qq"(*l)c""x

>
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— 2 — 2
% i€Qo ! q x;j=a% q9i~ Cii x : q9
L
0 / \i\.z @ Each vertex corresponds to the homology generator

@ KQ change of variables is encoded in homological
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Quiver nodes as homology generators

@ Let's apply KQ change of variables

= P{*(a,q)x
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o P(a,q) is an Euler characteristic of HOMFLY-PT
homology 7 (K) with set of generators ¥(K), so

€] >
) .

Z (—q)Cix; _ Yicwk)a®q9(—1)%
i€Qo 1_q2 1_q2

X
C

x;=a%i q9i~%ii x

P. Kucharski Physics and geometry of KQ correspondence



Introduction General idea
Physics and geometry of KQ correspondence Physics
Summary Geometry

Quiver nodes as homology generators

@ Let's apply KQ change of variables

P|(.;;|>‘K:1(x7q) = P1K(37q)X

Cii x

x;=a%iq9i~

o P(a,q) is an Euler characteristic of HOMFLY-PT
homology 7 (K) with set of generators ¥(K), so
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) .
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i€Qo 1_q2 1_q2

X
C

x;=a%i q9i~%ii x

o @ Each vertex corresponds to the homology generator
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Quiver nodes as homology generators

@ Let's apply KQ change of variables

= P{*(a,q)x

i x

Qk
P|d\=1(x’ q) xj=a% q%i~C

o P(a,q) is an Euler characteristic of HOMFLY-PT
homology 7 (K) with set of generators ¥(K), so

€] >
) .

Z (—q)Cix; _ Yicwk)a®q9(—1)%
i€Qo 1_q2 1_q2

X
C

x;=a%i q9i~%ii x

“./ \‘.2 @ Each vertex corresponds to the homology generator
e KQ change of variables is encoded in homological

degrees
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@ Generators of uncoloured homology correspond to
BPS states [Gukov, Schwarz, Vafa]
@ @ Quiver nodes correspond to BPS states of T[Lk]
@ counted by LMQOV invariants

Z (*Q)C""Xi o N1K(3~C/)
5 S
I'L’QO 1 q X

1—q?
a?i g9~ Cii x

@ ...or BPS states of T[Qk]| counted by DT invariants
Z (—a)%x;

Q
N Q d\Kzl(X- q)
icQo 1-¢q? 1-gq?

«0O0>» «Fr « >

< 3

DA



Introduction General idea
Physics and geometry of KQ correspondence Physics
Summary Geometry

Quiver nodes as BPS states

@ Generators of uncoloured homology correspond to
® BPS states [Gukov, Schwarz, Vafa]

po @ Quiver nodes correspond to BPS states of T|[Lk]
@ counted by LMOV invariants

y (=) xi _Ma9)
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Quiver nodes as BPS states

@ Generators of uncoloured homology correspond to
® BPS states [Gukov, Schwarz, Vafa]

po @ Quiver nodes correspond to BPS states of T|[Lk]
@ counted by LMOV invariants

Z (_Q)Ciixi _ NlK(a,q)X
2 2
i€Qo l1-q x;=a% q9i~Cii x 1-q

@ ...or BPS states of T[Qk] counted by DT invariants
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@ Recall: M2 branes are BPS states on the flat side and
holomorphic disks on the Calabi-Yau side

@ We can reinterpret topological data of KQ change of
variables in the language of disks:

e power r in x” — #F#windings around Lk
e power a; in a% — Ftwrappings around base 52
e power g; in g% — invariant self-linking#

o C;j =t; — linking# between disk and its small shift

@ Quiver nodes correspond to basic disks — holomorphic
curves that wind around Lk once (r =1)
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Quiver nodes as holomorphic disks

@ Recall: M2 branes are BPS states on the flat side and
® holomorphic disks on the Calabi-Yau side

@ We can reinterpret topological data of KQ change of
@ Q@ variables in the language of disks:
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@ Recall: M2 branes are BPS states on the flat side and
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@ We can reinterpret topological data of KQ change of
@ G@ variables in the language of disks:

e power r in x" — #windings around Lk

P. Kucharski Physics and geometry of KQ correspondence



Introduction General idea
Physics and geometry of KQ correspondence Physics
Summary Geometry

Quiver nodes as holomorphic disks

@ Recall: M2 branes are BPS states on the flat side and
® holomorphic disks on the Calabi-Yau side

@ We can reinterpret topological data of KQ change of
@ G@ variables in the language of disks:

e power r in x" — #windings around Lk

e power a; in a% — Fwrappings around base S2

P. Kucharski Physics and geometry of KQ correspondence



Introduction General idea
Physics and geometry of KQ correspondence Physics
Summary Geometry

Quiver nodes as holomorphic disks

@ Recall: M2 branes are BPS states on the flat side and
® holomorphic disks on the Calabi-Yau side

@ We can reinterpret topological data of KQ change of
@ Q@ variables in the language of disks:

e power r in x" — #windings around Lk
e power a; in a% — Fwrappings around base S2

e power g; in g% — invariant self-linking#

P. Kucharski Physics and geometry of KQ correspondence



Introduction General idea
Physics and geometry of KQ correspondence Physics
Summary Geometry

Quiver nodes as holomorphic disks
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Quiver nodes as holomorphic disks

@ Recall: M2 branes are BPS states on the flat side and
holomorphic disks on the Calabi-Yau side

@ We can reinterpret topological data of KQ change of
@ Q@ variables in the language of disks:

e power r in x" — #windings around Lk
e power a; in a% — Fwrappings around base S2

e power g; in g% — invariant self-linking#

e C;i =t; — linking# between disk and its small shift

@ Quiver nodes correspond to basic disks — holomorphic
curves that wind around Lk once (r =1)
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@ For the unknot quiver we have

(81.82)

Qol
|d| 1

(x,q) =

—qgx1+Xx2

_q2

e #(01) has two generators with degrees

(t1,t2) =

encode KQ change of variables x; = a“q

Pfl(al q)x

= (2,0),
(1,0) =

(671 Cl?)
(Ci1, (22)

= (0,0)

1

o Generators correspond to quiver vertices and their degrees
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@ For the unknot quiver we have

pQ —gx1t+Xx2
Pa= L) =—— P
e (01) has two generators with degrees

(317 32) = (27 0)

(g1,92) = (0,0)
(t1,22) = (1,0) = (Ci1, (22)
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Example: unknot quiver vertices and homology

@ For the unknot quiver we have

Q —qx1+x2
PE (x,q) = 2ot

1
e #(01) has two generators with degrees /j
(317 32) = (270)7 (QL CI2) = (070) e 2 O

(t1,t2) = (1,0) = (Ci1, (a2)

@ Generators correspond to quiver vertices and their degrees
encode KQ change of variables x; = a°q~1x, xo = x giving

—a®x+x _ Liew(0y) a%iq%(—1)Ci
1—qg2 1—¢g?

P%(a,q)x =
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e Two generators of .7#(01) correspond to
two BPS states

@ BPS states of T[Lg,| are counted by
LMOV invariants

N (a,q) = 1— 22
@ BPS states of T[Qp,] are counted by DT
invariants

QQO1

d\,1(x~ q)=—qgx1+x

40> «F»r « =>»

<

v

DA



e Two generators of .7#(01) correspond to
two BPS states

@ BPS states of T[Lg,] are counted by
LMOQV invariants

Nfl(a, q)=1- a2
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Example: unknot quiver vertices and BPS states

e Two generators of .7(01) correspond to
two BPS states

@ BPS states of T[Lo,] are counted by
LMOV invariants

Nj(l)l(avq) =1- 32

@ BPS states of T[Qp,] are counted by DT
invariants

Q
Q1 (x.4) = g1 + %0
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Example: unknot quiver vertices and holomorphic disks

@ Two BPS states on the flat side +— two holomorphic disks on
the Calabi-Yau side

@ For the first we have the following intepretation of
topological data in KQ change of variables:

ok
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Example: unknot quiver vertices and holomorphic disks

@ Two BPS states on the flat side +— two holomorphic disks on
the Calabi-Yau side

@ For the first we have the following intepretation of
topological data in KQ change of variables:
@ r=1 — winding around Lk
@ a; =2 — wrappings around base 52
@ g1 =0 — invariant self-linking

Ci1 =1 —> linking between disk and its
small shift

P. Kucharski Physics and geometry of KQ correspondence



Introduction General idea
Physics and geometry of KQ correspondence Physics
Summary Geometry

Example: unknot quiver vertices and holomorphic disks

@ Two BPS states on the flat side +— two holomorphic disks on
the Calabi-Yau side

@ For the second we have the following intepretation of
topological data in KQ change of variables:
@ r=1 — winding around Lk
@ ap =0 — wrappings around base 52
@ g» =0 — invariant self-linking

Coo = 0 — linking between disk and its
small shift
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Quiver arrows extracted from motivic generating series

@ Let's look closer at motivic generating series

| Qo] Xdi

PQ(qu) = Z ( q)):1<,J<\Q0‘C,Jdd Hi

d1,...,d|Q0‘20 q q )
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Quiver arrows extracted from motivic generating series

@ Let's look closer at motivic generating series

| Qo] Xdi

PUca)i=  F (caPre ]

d1,...,d|@y =0 q q )
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@ Dimension d; encodes the number of factors
corresponding to i-th vertex
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Quiver arrows extracted from motivic generating series

@ Let's look closer at motivic generating series
| Qo Xdi

PUca)i=  F (caPre ]

d1,...,d|@y =0 q q )

@ Dimension d; encodes the number of factors
corresponding to i-th vertex

@ Farrows (;; encodes interactions between
vertices i & j
- =
=29
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Quiver arrows extracted from motivic generating series

@ Let's look closer at motivic generating series

| Qo] Xdi

PUca)i=  F (caPre ]

d1,...,d|@y =0 q q )

@ Dimension d; encodes the number of factors
corresponding to i-th vertex

@ Farrows (;; encodes interactions between
vertices i & j

@ Motivic generating series counts all objects that
can be made from basic ones (nodes) according
to quiver arrows
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e Geometrically P®(x,q) counts all

holomorphic curves that can be made from
basic disks according to quiver arrows

e Dimension vector d; — #copies of the disk
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e Geometrically P®(x,q) counts all

holomorphic curves that can be made from
basic disks according to quiver arrows

e Dimension vector d; — #copies of the disk

e #arrows C;; — disk boundaries linking#
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Quiver arrows as disk intersections

e e Geometrically P®(x,q) counts all
e S holomorphic curves that can be made from
basic disks according to quiver arrows

@ Dimension vector d; — #tcopies of the disk

#arrows C;; — disk boundaries linking#

Example: one pair of arrows corresponds to
two bagel disk boundaries with linking## = 1
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@ Physically knots-quivers correspondence is a duality between
3d .4 =2 theories T[Lk] and T[Qk]

@ Quiver elements can be intepreted in terms of T[Qk] data as
well as holomorphic disks:

‘ Physics Geometry
@ ‘ U(1) gauge group Holomorphic disk
—_ ‘ Chern-Simons coupling Disk boundaries linking
@ More details in the paper - coming soon!
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Physics Geometry

9 U(1) gauge group Holomorphic disk
—~—— | Chern-Simons coupling Disk boundaries linking
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Thank you for your attention!
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