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Setting the stage

Ooguri-Vafa M-theory system:

Spacetime Resolved conifold x R1,4

M5 brane Lagrangian submanifold LK x R1,2
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Calabi-Yau side (resolved conifold)

Topological strings ↔ Chern-Simons theory ↔
↔ Knot theory [Witten]

Partition function=HOMFLY-PT gen. series

Z = PK (x ,a,q) =
∞

∑
r=0

PK
r (a,q)x r

M5 brane Lagrangian submanifold LK
M2 branes Holomorphic curves
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Flat side (R1,4)

T [LK ]: 3d N = 2 eff. theory on R1,2

Partition function=generating function of
Labastida-Mariño-Ooguri-Vafa invariants NK

r ,i ,j

Z = Exp

(
∑r ,i ,j NK

r ,i ,jx
raiqj

1−q2

)

M5 brane R1,2

M2 branes BPS states

BPS states are counted by LMOV invariants ⇒
LMOV integrality conjecture
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Quivers

Quiver Q = (Q0,Q1)

Q0 is a set of vertices
Q1 is a set of arrows between them (loops allowed)

Matrix form: Cij gives the number of arrows between
vertices i and j

If Cij = Cji we call the quiver symmetric

Quiver representations:
(Q0,Q1) −→ (Vector spaces, Linear maps)

Example from the picture:

Q0 = {1,2} −→ vector spaces V1 and V2 of dimensions
d1 and d2 (dimension vector d = (d1,d2))
Q1 = {1→ 1} −→ linear map V1→ V1

1

2

[
1 0
0 0

]
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Motivic generating series and DT invariants

Motivic generating series encodes information about
moduli spaces of representations of Q

PQ(x,q) = ∑
d1,...,d|Q0|≥0

(−q)∑1≤i ,j≤|Q0 |Ci ,jdidj
|Q0|

∏
i=1

xdi
i

(q2;q2)di

=Exp
(

ΩQ(x,q)

1−q2

)

ΩQ(x,q) is a generating function of motivic
Donaldson-Thomas (DT) invariants

Exp is the plethystic exponential

Exp
(
x raiqj)=(1−x raiqj)−1

Exp(f +g) =Exp(f )Exp(g)

1

2

[
1 0
0 0

]
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ΩQ(x,q) is a generating function of motivic
Donaldson-Thomas (DT) invariants

(q2;q2)di is the q-Pochhammer symbol

(z ;q2)r :=
r−1

∏
i=0

(1−zq2i ) = (1− z)
(
1− zq2) . . .(1−zq2(r−1))

1

2

[
1 0
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(−q)d2
1

xd1
1

(q2;q2)d1

xd2
2
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=Exp
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1 0
0 0

]

P. Kucharski Physics and geometry of KQ correspondence



Introduction
Physics and geometry of KQ correspondence

Summary

Knots
Quivers
Knots-quivers correspondence

Outline

1 Introduction
Knots
Quivers
Knots-quivers correspondence

2 Physics and geometry of KQ correspondence
General idea
Physics
Geometry

3 Summary

P. Kucharski Physics and geometry of KQ correspondence



Introduction
Physics and geometry of KQ correspondence

Summary

Knots
Quivers
Knots-quivers correspondence

Knots-quivers correspondence

1

2

Knots-quivers (KQ) correspondence is an equality

PK (x ,a,q) = PQK (x,q)
∣∣∣
xi =aai qqi−Cii x

PK (x ,a,q) – HOMFLY-PT generating series of knot K
PQK (x,q) – motivic generating series of respective quiver QK
xi = aai qqi−Cii x is a change of variables
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KQ correspondence - unknot example

1

2

P01(x ,a,q) =
∞

∑
r=0

(a2;q2)r

(q2;q2)r
x r

=1+
1−a2

1−q2 x + . . .

PQ01 (x1,x2,q) = ∑
d1,d2≥0

(−q)d2
1

xd1
1

(q2;q2)d1

xd2
2

(q2;q2)d2

=1+
−qx1 + x2

1−q2 + . . .
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KQ correspondence - unknot example

1

2

We can check that

P01(x ,a,q) = PQ01 (x1,x2,q)
∣∣∣
x1=a2q−1x , x2=x

1+
1−a2

1−q2 x + . . . = 1+
−qx1 + x2

1−q2 + . . .

∣∣∣∣
x1=a2q−1x , x2=x

Comparing with xi = aai qqi−Cii x we get

(a1,a2) = (2,0) (q1,q2) = (0,0)
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KQ correspondence and BPS states

1

2

We can also look at the level of BPS states:

Exp
(

NK (x ,a,q)

1−q2

)
= PK = PQK = Exp

(
ΩQK (x,q)

1−q2

)∣∣∣∣
xi =aai qqi−Cii x

NK (x ,a,q) = ΩQK (x,q)
∣∣∣
xi =aai qqi−Cii x

Integrality of DT invariants for symmetric quivers
[Kontsevich-Soibelman, Efimov] implies LMOV conjecture
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KQ correspondence discussed so far

Knots Quivers
Math HOMFLY-PT gen. series → Motivic gen. series

Physics
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Towards physics of KQ correspondence

Knots Quivers
Math HOMFLY-PT gen. series → Motivic gen. series

↓
Physics
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Geometric interpretations

Knots Quivers
Math HOMFLY-PT gen. series Motivic gen. series

↖ ↗
Geometric interpretations
↙ ↘

Physics 3d N = 2 T [LK ] 3d N = 2 T [QK ]
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Construction of knot complement theory

We can construct 3d N = 2 knot complement theory T [MK ]
basing on large colour and classical limit of HOMFLY-PT
polynomial [Fuji, Gukov, Sułkowski]

PK
r (a,q)

h̄→0−→
q2r fixed

exp
[
1
2h̄

(
W̃T [MK ] +O(h̄)

)]

W̃T [MK ] is a twisted superpotential

Li2(. . .)←→ chiral field
κ

2
log(. . .) log(. . .)←→ CS coupling

P. Kucharski Physics and geometry of KQ correspondence
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Recall: what is T [LK ]

T [LK ]: 3d N = 2 eff. theory on R1,2

Partition function=generating function of
Labastida-Marino-Ooguri-Vafa invariants NK

r ,i ,j

Z = Exp

(
∑r ,i ,j NK

r ,i ,jx
raiqj

1−q2

)

M5 brane R1,2

M2 branes BPS states
BPS states are counted by LMOV invariants ⇒
LMOV integrality conjecture
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Construction of T [LK ] theory

Idea

We construct T [LK ] analogously to T [MK ], but using PK (x ,a,q)

PK (x ,a,q)
h̄→0−→

q2r→y

∫
dy exp

[
1
2h̄

(
W̃T [LK ] +O(h̄)

)]
W̃T [LK ] = W̃T [MK ] + logx logy

Integral
∫

dy means that U(1) symmetry
corresponding to fugacity y is gauged

We have the same matter content with just
extra CS coupling with background field
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Example: T [L01]

For the unknot we have

P01(x ,a,q)
h̄→0−→

q2r→y

∫
dy exp

[
1
2h̄

(
W̃T [L01 ] +O(h̄)

)]
W̃T [L01 ] = Li2 (y) + Li2

(
y−1a−2)+ logx logy

T [L01 ] is a U(1) gauge theory (fugacity y) with one
fundamental and one antifundamental chiral

Antifundamental chiral is charged under the U(1)a global
symmetry arising from S2 in the conifold
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Recall of general idea - now we are here

Knots Quivers
Math HOMFLY-PT gen. series → Motivic gen. series

↓
Physics 3d N = 2 T [LK ]
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Missing element: T [QK ] theory

Idea
Consider large colour and classical limit of motivic generating series!

PQK (x,q)
h̄→0−→

q2di→yi

∫
∏
i

dyi exp
[
1
2h̄

(
W̃T [QK ] +O(h̄)

)]
W̃T [QK ] = ∑

i
[Li2 (yi ) + logxi logyi ] +∑

i ,j

Ci ,j

2
logyi logyj ,

Gauge group: U(1)#vertices

Matter content: one chiral for each vertex

CS couplings given by Ci ,j = #arrows
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General idea
Physics
Geometry

Example: T [Q01]

For the unknot quiver we have

PQ01 (x1,x2,q)
h̄→0−→

q2di→yi

∫
dy1dy2 exp

[
1
2h̄

(
W̃T [Q01 ] +O(h̄)

)]
W̃T [Q01 ] = Li2 (y1) + Li2 (y2) + logx1 logy1 + logx2 logy2 +

1
2
logy1 logy1

T [Q01 ] is a U(1)(1)×U(1)(2) gauge
theory with one chiral field for each group

CS level one for U(1)(1), consistent with

C 01 =

[
1 0
0 0

]
1

2
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We want the physical interpretation of KQ correspondence

Knots Quivers
Math HOMFLY-PT gen. series → Motivic gen. series

↓ ↓
Physics 3d N = 2 T [LK ] → 3d N = 2 T [QK ]
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Duality

Physical meaning of the
knots-quivers correspondence is
a duality between two
3d N = 2 theories:

T [LK ]←→ T [QK ]

We already know that

Z (T [LK ]) = PK (x ,a,q)

We can calculate the partition function of T [QK ] and indeed

Z (T [QK ]) = PQK (x,q)
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General idea
Physics
Geometry

Quiver nodes extracted from motivic generating series

Let’s look at motivic generating series
restricted to |d|= 1

PQK
|d|=1(x,q) = ∑

i∈Q0

(−q)Cii xi

1−q2

Every vertex (i ∈ Q0) contributes once

No interactions between different nodes

What is the meaning of PQK
|d|=1(x,q)?
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Quiver nodes as homology generators

Let’s apply KQ change of variables

PQK
|d|=1(x,q)

∣∣∣
xi =aai qqi−Cii x

= PK
1 (a,q)x

PK
1 (a,q) is an Euler characteristic of HOMFLY-PT

homology H (K ) with set of generators G (K ), so

∑
i∈Q0

(−q)Cii xi

1−q2

∣∣∣∣∣
xi =aai qqi−Cii x

=
∑i∈G (K) aai qqi (−1)Cii

1−q2 x

Each vertex corresponds to the homology generator

KQ change of variables is encoded in homological
degrees
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Quiver nodes as BPS states

Generators of uncoloured homology correspond to
BPS states [Gukov, Schwarz, Vafa]

Quiver nodes correspond to BPS states of T [LK ]
counted by LMOV invariants

∑
i∈Q0

(−q)Cii xi

1−q2

∣∣∣∣∣
xi =aai qqi−Cii x

=
NK

1 (a,q)

1−q2 x

...or BPS states of T [QK ] counted by DT invariants

∑
i∈Q0

(−q)Cii xi

1−q2 =
ΩQK
|d|=1(x,q)

1−q2
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Quiver nodes as holomorphic disks

Recall: M2 branes are BPS states on the flat side and
holomorphic disks on the Calabi-Yau side

We can reinterpret topological data of KQ change of
variables in the language of disks:

power r in x r −→ #windings around LK

power ai in aai −→ #wrappings around base S2

power qi in qqi −→ invariant self-linking#

Cii = ti −→ linking# between disk and its small shift

Quiver nodes correspond to basic disks – holomorphic
curves that wind around LK once (r = 1)
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Example: unknot quiver vertices and homology

For the unknot quiver we have

P
Q01
|d|=1(x,q) =

−qx1 + x2

1−q2

H (01) has two generators with degrees

(a1,a2) = (2,0), (q1,q2) = (0,0)

(t1, t2) = (1,0) = (C11,C22)

1

2

Generators correspond to quiver vertices and their degrees
encode KQ change of variables x1 = a2q−1x , x2 = x giving

P01
1 (a,q)x =

−a2x + x
1−q2 =

∑i∈G (01) aai qqi (−1)Cii

1−q2 x
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Example: unknot quiver vertices and BPS states

Two generators of H (01) correspond to
two BPS states

BPS states of T [L01 ] are counted by
LMOV invariants

N01
1 (a,q) = 1−a2

BPS states of T [Q01 ] are counted by DT
invariants

Ω
Q01
|d|=1(x,q) =−qx1 + x2

1

2
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1

2

P. Kucharski Physics and geometry of KQ correspondence



Introduction
Physics and geometry of KQ correspondence

Summary

General idea
Physics
Geometry

Example: unknot quiver vertices and holomorphic disks

Two BPS states on the flat side ←→ two holomorphic disks on
the Calabi-Yau side
For the first we have the following intepretation of
topological data in KQ change of variables:

r = 1 −→ winding around LK

a1 = 2 −→ wrappings around base S2

q1 = 0 −→ invariant self-linking

C11 = 1 −→ linking between disk and its
small shift
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Example: unknot quiver vertices and holomorphic disks

Two BPS states on the flat side ←→ two holomorphic disks on
the Calabi-Yau side
For the second we have the following intepretation of
topological data in KQ change of variables:

r = 1 −→ winding around LK

a2 = 0 −→ wrappings around base S2

q2 = 0 −→ invariant self-linking

C22 = 0 −→ linking between disk and its
small shift
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Quiver arrows extracted from motivic generating series

Let’s look closer at motivic generating series

PQ(x,q) := ∑
d1,...,d|Q0|≥0

(−q)∑1≤i ,j≤|Q0|Ci ,jdidj
|Q0|

∏
i=1

xdi
i

(q2;q2)di

Dimension di encodes the number of factors
corresponding to i-th vertex

#arrows Ci ,j encodes interactions between
vertices i & j

Motivic generating series counts all objects that
can be made from basic ones (nodes) according
to quiver arrows
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Quiver arrows as disk intersections

Geometrically PQ(x,q) counts all
holomorphic curves that can be made from
basic disks according to quiver arrows

Dimension vector di −→ #copies of the disk

#arrows Ci ,j −→ disk boundaries linking#

Example: one pair of arrows corresponds to
two bagel disk boundaries with linking# = 1
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Main messages

Physically knots-quivers correspondence is a duality between
3d N = 2 theories T [LK ] and T [QK ]

Quiver elements can be intepreted in terms of T [QK ] data as
well as holomorphic disks:

Physics Geometry
U(1) gauge group Holomorphic disk

Chern-Simons coupling Disk boundaries linking

More details in the paper - coming soon!
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Last message

Thank you for your attention!
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