Physics and geometry of knots-quivers correspondence

Piotr Kucharski

Uppsala University, Sweden
September 27, 2018

Collaboration

This talk is based on [1810.xxxxx] with:

with crucial references to [1707.02991, 1707.0417] with:

Markus Reineke

Marko Stošić

Piotr Sułkowski

Outline

(1) Introduction

- Knots
- Quivers
- Knots-quivers correspondence
(2) Physics and geometry of KQ correspondence
- General idea
- Physics
- Geometry
(3) Summary

Outline

(1) Introduction

- Knots
- Quivers
- Knots-quivers correspondence
(2) Physics and geometry of KQ correspondence
- General idea
- Physics
- Geometry
(3) Summary

Setting the stage

- Ooguri-Vafa M-theory system:

Spacetime	Resolved conifold	$\times \mathbb{R}^{1,4}$	
M5 brane	Lagrangian submanifold L_{K}	\times	$\mathbb{R}^{1,2}$

P. Kucharski

Physics and geometry of KQ correspondence

Calabi-Yau side (resolved conifold)

- Topological strings \leftrightarrow Chern-Simons theory \leftrightarrow \leftrightarrow Knot theory [Witten]
- Partition function=HOMFLY-PT gen. series

Calabi-Yau side (resolved conifold)

- Topological strings \leftrightarrow Chern-Simons theory \leftrightarrow \leftrightarrow Knot theory [Witten]
- Partition function=HOMFLY-PT gen. series

$$
Z=P^{K}(x, a, q)=\sum_{r=0}^{\infty} P_{r}^{K}(a, q) x^{r}
$$

- M5 brane \quad Lagrangian submanifold L_{K}

Calabi-Yau side (resolved conifold)

- Topological strings \leftrightarrow Chern-Simons theory \leftrightarrow \leftrightarrow Knot theory [Witten]
- Partition function=HOMFLY-PT gen. series

$$
Z=P^{K}(x, a, q)=\sum_{r=0}^{\infty} P_{r}^{K}(a, q) x^{r}
$$

M5 brane	Lagrangian submanifold L_{K}
M2 branes	Holomorphic curves

Physics and geometry of KQ correspondence Summary

Flat side $\left(\mathbb{R}^{1,4}\right)$

- $T\left[L_{K}\right]: 3 \mathrm{~d} \mathscr{N}=2$ eff. theory on $\mathbb{R}^{1,2}$
- Partition function=generating function of Labastida-Mariño-Ooguri-Vafa invariants $N_{r, i, j}^{K}$

- M5 brane | M $\mathbb{R}^{1,2}$ |
| :---: |
| M2 branes |
| BPS states |
- BPS states are counted by LMOV invariants \Rightarrow
 LMOV integrality conjecture

Flat side $\left(\mathbb{R}^{1,4}\right)$

- $T\left[L_{K}\right]: 3 \mathrm{~d} \mathscr{N}=2$ eff. theory on $\mathbb{R}^{1,2}$
- Partition function=generating function of Labastida-Mariño-Ooguri-Vafa invariants $N_{r, i, j}^{K}$

$$
Z=\operatorname{Exp}\left(\frac{\sum_{r, i, j} N_{r, i, j}^{K} x^{r} a^{i} q^{j}}{1-q^{2}}\right)
$$

- BPS states are counted by LMOV invariants \Rightarrow
 LMOV integrality conjecture

Flat side $\left(\mathbb{R}^{1,4}\right)$

- $T\left[L_{K}\right]: 3 \mathrm{~d} \mathscr{N}=2$ eff. theory on $\mathbb{R}^{1,2}$
- Partition function=generating function of Labastida-Mariño-Ooguri-Vafa invariants $N_{r, i, j}^{K}$

$$
Z=\operatorname{Exp}\left(\frac{\sum_{r, i, j} N_{r, i, j}^{K} x^{r} a^{i} q^{j}}{1-q^{2}}\right)
$$

- | M5 brane | $\mathbb{R}^{1,2}$ |
| :---: | :---: |
| M2 branes | BPS states |
- BPS states are counted by LMOV invariants \Rightarrow
 LMOV integrality conjecture

Flat side $\left(\mathbb{R}^{1,4}\right)$

- $T\left[L_{K}\right]: 3 \mathrm{~d} \mathscr{N}=2$ eff. theory on $\mathbb{R}^{1,2}$
- Partition function=generating function of Labastida-Mariño-Ooguri-Vafa invariants $N_{r, i, j}^{K}$

$$
Z=\operatorname{Exp}\left(\frac{\sum_{r, i, j} N_{r, i, j}^{K} x^{r} a^{i} q^{j}}{1-q^{2}}\right)
$$

- M5 brane | M2 branes | $\mathbb{R}^{1,2}$ |
| :---: | :---: |
| BPS states | |
- BPS states are counted by LMOV invariants \Rightarrow
 LMOV integrality conjecture

Outline

(1) Introduction

- Knots
- Quivers
- Knots-quivers correspondence
(2) Physics and geometry of KQ correspondence
- General idea
- Physics
- Geometry
(3) Summary

Quivers

- Quiver $Q=\left(Q_{0}, Q_{1}\right)$
- Q_{0} is a set of vertices
- Q_{1} is a set of arrows between them (loops allowed)
- Matrix form: $C_{i j}$ gives the number of arrows between vertices i and j

- If $C_{i j}=C_{i j}$ we call the quiver symmetric
$2 \bigcirc$
- Quiver representations:
$\left(Q_{0}, Q_{1}\right) \longrightarrow($ Vector spaces, Linear maps)
- Example from the picture:
$\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$
- $Q_{0}=\{1,2\} \longrightarrow$ vector spaces V_{1} and V_{2} of dimensions d_{1} and d_{2} (dimension vector $\left.\boldsymbol{d}=\left(d_{1}, d_{2}\right)\right)$
- $Q_{1}=\{1 \rightarrow 1\}$

Quivers

- Quiver $Q=\left(Q_{0}, Q_{1}\right)$
- Q_{0} is a set of vertices
- Q_{1} is a set of arrows between them (loops allowed)
- Matrix form: $C_{i j}$ gives the number of arrows between
vertices i and j

1

2

- Quiver representations: $\left(Q_{0}, Q_{1}\right) \longrightarrow$ (Vector spaces, Linear maps)
- Example from the picture:
- $Q_{0}=\{1,2\} \longrightarrow$ vector spaces V_{1} and V_{2} of dimensions d_{1} and d_{2} (dimension vector $\boldsymbol{d}=\left(d_{1}, d_{2}\right)$)
- $Q_{1}=\{1 \rightarrow 1\}$
- If $C_{i j}=C_{j i}$ we call the quiver symmetric
\bigcirc
$\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$
P. Kucharski

Physics and geometry of KQ correspondence

Quivers

- Quiver $Q=\left(Q_{0}, Q_{1}\right)$
- Q_{0} is a set of vertices
- Q_{1} is a set of arrows between them (loops allowed)
- Matrix form: $C_{i j}$ gives the number of arrows between vertices i and j

1

- If $C_{i j}=C_{j i}$ we call the quiver symmetric

- Example from the picture:
- $Q_{0}=\{1,2\} \longrightarrow$ vector spaces V_{1} and V_{2} of dimensions d_{1} and d_{2} (dimension vector $\left.\boldsymbol{d}=\left(d_{1}, d_{2}\right)\right)$
- $Q_{1}=\{1 \rightarrow 1\}$

Quivers

- Quiver $Q=\left(Q_{0}, Q_{1}\right)$
- Q_{0} is a set of vertices
- Q_{1} is a set of arrows between them (loops allowed)
- Matrix form: $C_{i j}$ gives the number of arrows between vertices i and j

1

- If $C_{i j}=C_{j i}$ we call the quiver symmetric
- Quiver representations: $\left(Q_{0}, Q_{1}\right) \longrightarrow$ (Vector spaces, Linear maps)

$$
\left.\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

Quivers

- Quiver $Q=\left(Q_{0}, Q_{1}\right)$
- Q_{0} is a set of vertices
- Q_{1} is a set of arrows between them (loops allowed)
- Matrix form: $C_{i j}$ gives the number of arrows between vertices i and j

1

- If $C_{i j}=C_{j i}$ we call the quiver symmetric
- Quiver representations: $\left(Q_{0}, Q_{1}\right) \longrightarrow$ (Vector spaces, Linear maps)
- Example from the picture:
- $Q_{0}=\{1,2\} \longrightarrow$ vector spaces V_{1} and V_{2} of dimensions d_{1} and d_{2} (dimension vector $\boldsymbol{d}=\left(d_{1}, d_{2}\right)$)
- $Q_{1}=\{1 \rightarrow 1\} \longrightarrow$ linear map $V_{1} \rightarrow V_{1}$

Motivic generating series and DT invariants

- Motivic generating series encodes information about moduli spaces of representations of Q

$$
\begin{aligned}
P^{Q}(\mathrm{x}, q) & =\sum_{d_{1}, \ldots, d_{\left|Q_{0}\right|} \geq 0}(-q)^{\sum_{1 \leq i, j \leq\left|Q_{0}\right|} c_{i, j} d_{i} d_{j}} \prod_{i=1}^{\left|Q_{0}\right|} \frac{x_{i}^{d_{i}}}{\left(q^{2} ; q^{2}\right)_{d_{i}}} \\
& =\operatorname{Exp}\left(\frac{\Omega^{Q}(x, q)}{1-q^{2}}\right)
\end{aligned}
$$

1

- $\Omega^{Q}(\mathbf{x}, q)$ is a generating function of motivic Donaldson-Thomas (DT) invariants
- Exp is the plethystic exponential

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

$$
\begin{aligned}
\operatorname{Exp}\left(x^{r} a^{i} q^{j}\right) & =\left(1-x^{r} a^{i} q^{j}\right)^{-1} \\
\operatorname{Exp}(f+g) & =\operatorname{Exp}(f) \operatorname{Exp}(g)
\end{aligned}
$$

Motivic generating series and DT invariants

- Motivic generating series encodes information about moduli spaces of representations of Q

$$
\begin{align*}
P^{Q}(\mathrm{x}, q) & =\sum_{d_{1}, \ldots, d_{\left|Q_{0}\right|} \geq 0}(-q)^{\sum_{1 \leq i, j \leq\left|Q_{0}\right|} c_{i, j} d_{i} d_{j}} \prod_{i=1}^{\left|Q_{0}\right|} \frac{x_{i}^{d_{i}}}{\left(q^{2} ; q^{2}\right)_{d_{i}}} \\
& =\operatorname{Exp}\left(\frac{\Omega^{Q}(x, q)}{1-q^{2}}\right) \tag{0}
\end{align*}
$$

1

2

- $\Omega^{Q}(\mathbf{x}, q)$ is a generating function of motivic Donaldson-Thomas (DT) invariants
- $\left(q^{2} ; q^{2}\right)_{d_{i}}$ is the q-Pochhammer symbol

$$
\left(z ; q^{2}\right)_{r}:=\prod_{i=0}^{r-1}\left(1-z q^{2 i}\right)=(1-z)\left(1-z q^{2}\right) \ldots\left(1-z q^{2(r-1)}\right)
$$

Motivic generating series and DT invariants

- Motivic generating series encodes information about moduli spaces of representations of Q

$$
\begin{aligned}
P^{Q}(\mathrm{x}, q) & =\sum_{d_{1}, \ldots, d_{\left|Q_{0}\right|} \geq 0}(-q)^{\sum_{1 \leq i, j \leq\left|Q_{0}\right|} c_{i, j} d_{i} d_{j}} \prod_{i=1}^{\left|Q_{0}\right|} \frac{x_{i}^{d_{i}}}{\left(q^{2} ; q^{2}\right)_{d_{i}}} \\
& =\operatorname{Exp}\left(\frac{\Omega^{Q}(\mathrm{x}, q)}{1-q^{2}}\right)
\end{aligned}
$$

1

- Example from the picture

$$
\begin{aligned}
P^{Q}\left(x_{1}, x_{2}, q\right) & =\sum_{d_{1}, d_{2} \geq 0}(-q)^{d_{1}^{2}} \frac{x_{1}^{d_{1}}}{\left(q^{2} ; q^{2}\right)_{d_{1}}} \frac{x_{2}^{d_{2}}}{\left(q^{2} ; q^{2}\right)_{d_{2}}} \quad\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \\
& =\operatorname{Exp}\left(\frac{-q x_{1}+x_{2}}{1-q^{2}}\right)
\end{aligned}
$$

Outline

(1) Introduction

- Knots
- Quivers
- Knots-quivers correspondence
(2) Physics and geometry of KQ correspondence
- General idea
- Physics
- Geometry
(3) Summary

Knots-quivers correspondence

20

- Knots-quivers (KQ) correspondence is an equality

$$
P^{K}(x, a, q)=\left.P^{Q_{K}}(\mathbf{x}, q)\right|_{x_{i}=a^{a_{i}} q^{q_{i}}-c_{i i x}}
$$

- $P^{K}(x, a, q)$ - HOMFLY-PT generating series of knot K
- $P^{Q_{K}}(\mathbf{x}, q)$ - motivic generating series of respective quiver Q_{K}
- $x_{i}=a^{a_{i}} q^{q_{i}}-C_{i i} x$ is a change of variables

Knots-quivers correspondence

$2 \bigcirc$

- Knots-quivers (KQ) correspondence is an equality

$$
P^{K}(x, a, q)=\left.P^{Q_{K}}(\mathbf{x}, q)\right|_{x_{i}=a^{a_{i}} q^{q_{i}}-c_{i i x}}
$$

- $P^{K}(x, a, q)$ - HOMFLY-PT generating series of knot K
- $P^{Q_{K}}(x, q)$ - motivic generating series of respective quiver Q_{K}
- $x_{i}=a^{a_{i}} q^{q_{i}-C_{i i} x}$ is a change of variables

Knots-quivers correspondence

$2 \bigcirc$

- Knots-quivers (KQ) correspondence is an equality

$$
P^{K}(x, a, q)=\left.P^{Q_{K}}(\mathbf{x}, q)\right|_{x_{i}=a^{a_{i}} q^{q_{i}}-c_{i i x}}
$$

- $P^{K}(x, a, q)$ - HOMFLY-PT generating series of knot K
- $P^{Q_{K}}(\mathbf{x}, q)$ - motivic generating series of respective quiver Q_{K}
- $x_{i}=a^{a_{i}} q^{q_{i}-C_{i i}} X$ is a change of variables

Knots-quivers correspondence

$2 \bigcirc$

- Knots-quivers (KQ) correspondence is an equality

$$
P^{K}(x, a, q)=\left.P^{Q_{K}}(x, q)\right|_{x_{i}=a^{a_{i}} q^{q_{i}}-c_{i i x}}
$$

- $P^{K}(x, a, q)$ - HOMFLY-PT generating series of knot K
- $P^{Q_{K}}(\mathbf{x}, q)$ - motivic generating series of respective quiver Q_{K}
- $x_{i}=a^{a_{i}} q^{q_{i}-C_{i i} x}$ is a change of variables

KQ correspondence - unknot example

$$
\begin{aligned}
P^{0_{1}}(x, a, q) & =\sum_{r=0}^{\infty} \frac{\left(a^{2} ; q^{2}\right)_{r}}{\left(q^{2} ; q^{2}\right)_{r}} x^{r} \\
& =1+\frac{1-a^{2}}{1-q^{2}} x+\ldots
\end{aligned}
$$

2
O

$$
\begin{aligned}
P^{Q_{0_{1}}}\left(x_{1}, x_{2}, q\right) & =\sum_{d_{1}, d_{2} \geq 0}(-q)^{d_{1}^{2}} \frac{x_{1}^{d_{1}}}{\left(q^{2} ; q^{2}\right)_{d_{1}}} \frac{x_{2}^{d_{2}}}{\left(q^{2} ; q^{2}\right)_{d_{2}}} \\
& =1+\frac{-q x_{1}+x_{2}}{1-q^{2}}+\ldots
\end{aligned}
$$

KQ correspondence - unknot example

20

- We can check that

$$
\begin{aligned}
P^{0_{1}}(x, a, q) & =\left.P^{Q_{0_{1}}}\left(x_{1}, x_{2}, q\right)\right|_{x_{1}=a^{2} q^{-1} x, x_{2}=x} \\
1+\frac{1-a^{2}}{1-q^{2}} x+\ldots & =1+\frac{-q x_{1}+x_{2}}{1-q^{2}}+\left.\ldots\right|_{x_{1}=a^{2} q^{-1} x, x_{2}=x}
\end{aligned}
$$

- Comparing with $x_{i}=a^{a_{i}} q^{q_{i}-C_{i i}} x$ we get

$\left(q_{1}, q_{2}\right)=(0,0)$

KQ correspondence - unknot example

20

- We can check that

$$
\begin{aligned}
P^{0_{1}}(x, a, q) & =\left.P^{Q_{0_{1}}}\left(x_{1}, x_{2}, q\right)\right|_{x_{1}=a^{2} q^{-1} x, x_{2}=x} \\
1+\frac{1-a^{2}}{1-q^{2}} x+\ldots & =1+\frac{-q x_{1}+x_{2}}{1-q^{2}}+\left.\ldots\right|_{x_{1}=a^{2} q^{-1} x, x_{2}=x}
\end{aligned}
$$

- Comparing with $x_{i}=a^{a_{i}} q^{q_{i}-C_{i i} x}$ we get

$$
\left(a_{1}, a_{2}\right)=(2,0) \quad\left(q_{1}, q_{2}\right)=(0,0)
$$

KQ correspondence and BPS states

- We can also look at the level of BPS states:

$$
\begin{aligned}
\operatorname{Exp}\left(\frac{N^{K}(x, a, q)}{1-q^{2}}\right)=P^{K} & =P^{Q_{K}}=\left.\operatorname{Exp}\left(\frac{\Omega^{Q_{K}}(\mathbf{x}, q)}{1-q^{2}}\right)\right|_{x_{i}=a^{a_{i}} q^{q_{i}-c_{i i x}}} \\
N^{K}(x, a, q) & =\left.\Omega^{Q_{K}}(x, q)\right|_{x_{i}=a^{a_{i}} q^{q_{i}-c_{i i x}}}
\end{aligned}
$$

- Integrality of DT invariants for symmetric quivers [Kontsevich-Soibelman, Efimov] implies LMOV conjecture

KQ correspondence and BPS states

- We can also look at the level of BPS states:

$$
\begin{aligned}
\operatorname{Exp}\left(\frac{N^{K}(x, a, q)}{1-q^{2}}\right)=P^{K} & =P^{Q_{K}}=\left.\operatorname{Exp}\left(\frac{\Omega^{Q_{K}}(\mathbf{x}, q)}{1-q^{2}}\right)\right|_{x_{i}=a^{a_{i}} q^{q_{i}}-c_{i i x}} \\
N^{K}(x, a, q) & =\left.\Omega^{Q_{K}}(x, q)\right|_{x_{i}=a^{a_{i}} q^{q_{i}-c_{i i x}}}
\end{aligned}
$$

- Integrality of DT invariants for symmetric quivers [Kontsevich-Soibelman, Efimov] implies LMOV conjecture

General idea
Physics Geometry

Outline

(1) Introduction

- Knots
- Quivers
- Knots-quivers correspondence
(2) Physics and geometry of KQ correspondence
- General idea
- Physics
- Geometry
(3) Summary

KQ correspondence discussed so far

Towards physics of KQ correspondence

Towards physics of KQ correspondence

Missing element

Missing element

Missing element

Geometric interpretations

General idea
Physics
Geometry

Outline

(1) Introduction

- Knots
- Quivers
- Knots-quivers correspondence
(2) Physics and geometry of KQ correspondence
- General idea
- Physics
- Geometry
(3) Summary

Construction of knot complement theory

- We can construct 3d $\mathscr{N}=2$ knot complement theory $T\left[M_{K}\right]$ basing on large colour and classical limit of HOMFLY-PT polynomial [Fuji, Gukov, Sułkowski]

$$
P_{r}^{K}(a, q) \underset{q^{2 r} \text { fixed }}{\hbar \rightarrow 0} \exp \left[\frac{1}{2 \hbar}\left(\widetilde{\mathscr{W}}_{T\left[M_{K}\right]}+O(\hbar)\right)\right]
$$

- $\widetilde{\mathscr{W}}_{T\left[M_{K}\right]}$ is a twisted superpotential

$$
\operatorname{Li}_{2}(\ldots) \longleftrightarrow \text { chiral field }
$$

$$
\frac{\kappa}{2} \log (\ldots) \log (\ldots) \longleftrightarrow \text { CS coupling }
$$

General idea

Recall: what is $T\left[L_{K}\right]$

- $T\left[L_{K}\right]: 3 \mathrm{~d} \mathscr{N}=2$ eff. theory on $\mathbb{R}^{1,2}$
- Partition function=generating function of Labastida-Marino-Ooguri-Vafa invariants $N_{r, i, j}^{K}$

$$
Z=\operatorname{Exp}\left(\frac{\sum_{r, i, j} N_{r, i, j}^{K} x^{r} a^{i} q^{j}}{1-q^{2}}\right)
$$

- M5 brane | $\mathbb{R}^{1,2}$ | |
| :---: | :---: |
| M2 branes | BPS states |
- BPS states are counted by LMOV invariants \Rightarrow LMOV integrality conjecture

General idea

Recall: what is $T\left[L_{K}\right]$

- $T\left[L_{K}\right]: 3 \mathrm{~d} \mathscr{N}=2$ eff. theory on $\mathbb{R}^{1,2}$
- Partition function=generating function of Labastida-Marino-Ooguri-Vafa invariants $N_{r, i, j}^{K}$

$$
Z=\operatorname{Exp}\left(\frac{\sum_{r, i, j} N_{r, i, j}^{K} x^{r} a^{i} q^{j}}{1-q^{2}}\right)
$$

- M5 brane $\quad \frac{\mathbb{R}^{1,2}}{\text { M2 branes }} \begin{aligned} & \text { BPS states }\end{aligned}$
- BPS states are counted by LMOV invariants \Rightarrow LMOV integrality conjecture

Construction of $T\left[L_{K}\right]$ theory

Idea

We construct $T\left[L_{K}\right]$ analogously to $T\left[M_{K}\right]$, but using $P^{K}(x, a, q)$

$\widetilde{\mathscr{W}}_{T\left[L_{K}\right]}=\widetilde{\mathscr{W}}_{T\left[M_{K}\right]}+\log x \log y$

- Integral $\int d y$ means that $U(1)$ symmetry corresponding to fugacity y is gauged
- We have the same matter content with just
 extra CS coupling with background field

Construction of $T\left[L_{K}\right]$ theory

Idea

We construct $T\left[L_{K}\right]$ analogously to $T\left[M_{K}\right]$, but using $P^{K}(x, a, q)$
$P^{K}(x, a, q) \underset{q^{2 r \rightarrow y}}{\hbar \rightarrow 0} \int d y \exp \left[\frac{1}{2 \hbar}\left(\widetilde{W}_{T\left[L_{k}\right]}+O(\hbar)\right)\right]$
$\widetilde{W}_{T\left[L_{K}\right]}=\widetilde{W}_{T\left[M_{K}\right]}+\log x \log y$

- Integral $\int d y$ means that $U(1)$ symmetry corresponding to fugacity y is gauged
- We have the same matter content with just extra CS coupling with background field

Construction of $T\left[L_{K}\right]$ theory

Idea

We construct $T\left[L_{K}\right]$ analogously to $T\left[M_{K}\right]$, but using $P^{K}(x, a, q)$
$P^{K}(x, a, q) \underset{q^{2 r \rightarrow y}}{\stackrel{\hbar \rightarrow 0}{2 r}} \int d y \exp \left[\frac{1}{2 \hbar}\left(\widetilde{\mathscr{W}}_{T}\left[L_{K}\right]+O(\hbar)\right)\right]$
$\widetilde{\mathscr{W}}_{T\left[L_{K}\right]}=\widetilde{\mathscr{W}}_{T\left[M_{K}\right]}+\log x \log y$

- Integral $\int d y$ means that $U(1)$ symmetry corresponding to fugacity y is gauged
- We have the same matter content with just extra CS coupling with background field

Construction of $T\left[L_{K}\right]$ theory

Idea

We construct $T\left[L_{K}\right]$ analogously to $T\left[M_{K}\right]$, but using $P^{K}(x, a, q)$
$P^{K}(x, a, q) \underset{q^{2 r \rightarrow y}}{\hbar \rightarrow 0} \int d y \exp \left[\frac{1}{2 \hbar}\left(\widetilde{W}_{\left.T L_{K}\right]}+O(\hbar)\right)\right]$
$\widetilde{\mathscr{W}}_{T\left[L_{K}\right]}=\widetilde{\mathscr{W}}_{T}\left[M_{K}\right]+\log x \log y$

- Integral $\int d y$ means that $U(1)$ symmetry corresponding to fugacity y is gauged
- We have the same matter content with just extra CS coupling with background field

[^0]General idea

Example: $T\left[L_{0_{1}}\right]$

- For the unknot we have

$$
\begin{aligned}
& P^{0_{1}}(x, a, q) \underset{q^{2 r} \rightarrow y}{\hbar \rightarrow 0} \int d y \exp \left[\frac{1}{2 \hbar}\left(\widetilde{\mathscr{W}}_{T}\left[L_{0_{1}}\right]+O(\hbar)\right)\right] \\
& \widetilde{\mathscr{W}}_{T\left[L_{0_{1}}\right]}=\operatorname{Li}_{2}(y)+\operatorname{Li}_{2}\left(y^{-1} a^{-2}\right)+\log x \log y
\end{aligned}
$$

- $T\left[L_{0_{1}}\right]$ is a $U(1)$ gauge theory (fugacity y) with one fundamental and one antifundamental chiral
- Antifundamental chiral is charged under the $U(1)_{a}$ global symmetry arising from S^{2} in the conifold

General idea

Example: $T\left[L_{0_{1}}\right]$

- For the unknot we have

$$
\begin{aligned}
& P^{0_{1}}(x, a, q) \underset{q^{2 r} \rightarrow y}{\hbar \rightarrow 0} \int d y \exp \left[\frac{1}{2 \hbar}\left(\widetilde{\mathscr{W}}_{T}\left[L_{0_{1}}\right]+O(\hbar)\right)\right] \\
& \widetilde{W}_{T\left[L_{0_{1}}\right]}=\operatorname{Li}_{2}(y)+\operatorname{Li}_{2}\left(y^{-1} a^{-2}\right)+\log x \log y
\end{aligned}
$$

- $T\left[L_{0_{1}}\right]$ is a $U(1)$ gauge theory (fugacity y) with one fundamental and one antifundamental chiral
- Antifundamental chiral is charged under the $U(1)_{a}$ global symmetry arising from S^{2} in the conifold

Example: $T\left[L_{0_{1}}\right]$

- For the unknot we have

$$
\begin{aligned}
& P^{0_{1}}(x, a, q) \underset{q^{2 r} \rightarrow y}{\hbar \rightarrow 0} \int d y \exp \left[\frac{1}{2 \hbar}\left(\widetilde{\mathscr{W}}_{T}\left[L_{0_{1}}\right]+O(\hbar)\right)\right] \\
& \widetilde{W}_{T\left[L_{0_{1}}\right]}=\operatorname{Li}_{2}(y)+\operatorname{Li}_{2}\left(y^{-1} a^{-2}\right)+\log x \log y
\end{aligned}
$$

- $T\left[L_{0_{1}}\right]$ is a $U(1)$ gauge theory (fugacity y) with one fundamental and one antifundamental chiral
- Antifundamental chiral is charged under the $U(1)_{a}$ global symmetry arising from S^{2} in the conifold

General idea
Physics
Geometry

Recall of general idea - now we are here

General idea

We look for the missing element

General idea

We look for the missing element

Missing element: $T\left[Q_{K}\right]$ theory

Idea

Consider large colour and classical limit of motivic generating series!

- Gauge group: $U(1)^{\# v e r t i c e s}$
- Matter content: one chiral for each vertex
- CS couplings given by $C_{i, j}=\#$ arrows

P. Kucharski

Physics and geometry of KQ correspondence

Missing element: $T\left[Q_{K}\right]$ theory

Idea

Consider large colour and classical limit of motivic generating series!

$$
\begin{aligned}
& P^{Q_{K}}(\mathrm{x}, q) \underset{q^{2 d_{i} \rightarrow y_{i}}}{\stackrel{\hbar \rightarrow 0}{\rightarrow}} \int \prod_{i} d y_{i} \exp \left[\frac{1}{2 \hbar}\left(\widetilde{\mathscr{W}}_{T\left[Q_{K}\right]}+O(\hbar)\right)\right] \\
& \widetilde{\mathscr{W}}_{T\left[Q_{K}\right]}=\sum_{i}\left[\operatorname{Li}_{2}\left(y_{i}\right)+\log x_{i} \log y_{i}\right]+\sum_{i, j} \frac{C_{i, j}}{2} \log y_{i} \log y_{j},
\end{aligned}
$$

- Gauge group: $U(1)^{\# v e r t i c e s}$
- Matter content: one chiral for each vertex
- CS couplings given by $C_{i, j}=$ \#arrows

[^1]
Missing element: $T\left[Q_{K}\right]$ theory

Idea

Consider large colour and classical limit of motivic generating series!

$$
\begin{aligned}
& P^{Q_{K}}(\mathrm{x}, q) \underset{q^{2 d_{i} \rightarrow y_{i}}}{\stackrel{\hbar \rightarrow 0}{\longrightarrow}} \int \prod_{i} d y_{i} \exp \left[\frac{1}{2 \hbar}\left(\widetilde{\mathscr{W}}_{T\left[Q_{K}\right]}+O(\hbar)\right)\right] \\
& \widetilde{\mathscr{W}}_{T\left[Q_{K}\right]}=\sum_{i}\left[\operatorname{Li}_{2}\left(y_{i}\right)+\log x_{i} \log y_{i}\right]+\sum_{i, j} \frac{C_{i, j}}{2} \log y_{i} \log y_{j}
\end{aligned}
$$

- Gauge group: $U(1)^{\# v e r t i c e s}$
- Matter content: one chiral for each vertex
- CS couplings given by $C_{i, j}=\#$ arrows

[^2]Physics and geometry of KQ correspondence

Missing element: $T\left[Q_{K}\right]$ theory

Idea

Consider large colour and classical limit of motivic generating series!

$$
\begin{aligned}
& P^{Q_{K}}(\mathrm{x}, q) \underset{q^{2 d_{i} \rightarrow y_{i}}}{\stackrel{\hbar \rightarrow 0}{\longrightarrow}} \int \prod_{i} d y_{i} \exp \left[\frac{1}{2 \hbar}\left(\widetilde{\mathscr{W}}_{T\left[Q_{K}\right]}+O(\hbar)\right)\right] \\
& \widetilde{\mathscr{W}}_{T\left[Q_{K}\right]}=\sum_{i}\left[\operatorname{Li}_{2}\left(y_{i}\right)+\log x_{i} \log y_{i}\right]+\sum_{i, j} \frac{C_{i, j}}{2} \log y_{i} \log y_{j},
\end{aligned}
$$

- Gauge group: $U(1)^{\# v e r t i c e s}$
- Matter content: one chiral for each vertex
- CS couplings given by $C_{i, j}=$ \#arrows

[^3]Physics and geometry of KQ correspondence

Missing element: $T\left[Q_{K}\right]$ theory

Idea

Consider large colour and classical limit of motivic generating series!

$$
\begin{aligned}
& P^{Q_{K}}(\mathrm{x}, q) \underset{q^{2 d_{i} \rightarrow y_{i}}}{\stackrel{\hbar \rightarrow 0}{\rightarrow}} \int \prod_{i} d y_{i} \exp \left[\frac{1}{2 \hbar}\left(\widetilde{\mathscr{W}}_{T}\left[Q_{K}\right]+O(\hbar)\right)\right] \\
& \widetilde{\mathscr{W}}_{T\left[Q_{K}\right]}=\sum_{i}\left[\operatorname{Li}_{2}\left(y_{i}\right)+\log x_{i} \log y_{i}\right]+\sum_{i, j} \frac{C_{i, j}}{2} \log y_{i} \log y_{j},
\end{aligned}
$$

- Gauge group: $U(1)^{\# v e r t i c e s}$
- Matter content: one chiral for each vertex
- CS couplings given by $C_{i, j}=\#$ arrows

Example: $T\left[Q_{0_{1}}\right]$

- For the unknot quiver we have

$$
\begin{aligned}
& P^{Q_{0_{1}}}\left(x_{1}, x_{2}, q\right) \underset{q^{2 d_{i} \rightarrow y_{i}}}{\stackrel{\hbar \rightarrow 0}{\rightarrow}} \int d y_{1} d y_{2} \exp \left[\frac{1}{2 \hbar}\left(\widetilde{\mathscr{W}}_{T\left[Q_{0_{1}}\right]}+O(\hbar)\right)\right] \\
& \widetilde{W}_{T\left[Q_{0_{1}}\right]}=\operatorname{Li}_{2}\left(y_{1}\right)+\operatorname{Li}_{2}\left(y_{2}\right)+\log x_{1} \log y_{1}+\log x_{2} \log y_{2}+\frac{1}{2} \log y_{1} \log y_{1}
\end{aligned}
$$

- CS level one for $U(1)^{(1)}$, consistent with

$$
2
$$

Example: $T\left[Q_{0_{1}}\right]$

- For the unknot quiver we have

$$
\begin{aligned}
& P^{Q_{0_{1}}}\left(x_{1}, x_{2}, q\right) \underset{q^{2 d_{i}} y_{i}}{\stackrel{\hbar \rightarrow 0}{\rightarrow}} \int d y_{1} d y_{2} \exp \left[\frac{1}{2 \hbar}\left(\widetilde{\mathscr{W}}_{T}\left[Q_{0_{1}}\right]+O(\hbar)\right)\right] \\
& \widetilde{\mathscr{W}}_{T\left[Q_{0_{1}}\right]}=\operatorname{Li}_{2}\left(y_{1}\right)+\operatorname{Li}_{2}\left(y_{2}\right)+\log x_{1} \log y_{1}+\log x_{2} \log y_{2}+\frac{1}{2} \log y_{1} \log y_{1}
\end{aligned}
$$

- $T\left[Q_{0_{1}}\right]$ is a $U(1)^{(1)} \times U(1)^{(2)}$ gauge theory with one chiral field for each group

- CS level one for $U(1)^{(1)}$, consistent with

Example: $T\left[Q_{0_{1}}\right]$

- For the unknot quiver we have

$$
\begin{aligned}
& P^{Q_{0_{1}}}\left(x_{1}, x_{2}, q\right) \underset{q^{2 d_{i} \rightarrow y_{i}}}{\stackrel{\hbar \rightarrow 0}{\rightarrow}} \int d y_{1} d y_{2} \exp \left[\frac{1}{2 \hbar}\left(\widetilde{\mathscr{W}}_{T\left[Q_{0_{1}}\right]}+O(\hbar)\right)\right] \\
& \widetilde{W}_{T\left[Q_{0_{1}}\right]}=\operatorname{Li}_{2}\left(y_{1}\right)+\operatorname{Li}_{2}\left(y_{2}\right)+\log x_{1} \log y_{1}+\log x_{2} \log y_{2}+\frac{1}{2} \log y_{1} \log y_{1}
\end{aligned}
$$

- $T\left[Q_{0_{1}}\right]$ is a $U(1)^{(1)} \times U(1)^{(2)}$ gauge theory with one chiral field for each group

- CS level one for $U(1)^{(1)}$, consistent with $C^{0_{1}}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$

2

General idea
Physics
Geometry

Recall of general idea - now we are here

General idea

We want the physical interpretation of KQ correspondence

General idea
Physics
Geometry

Duality

- Physical meaning of the knots-quivers correspondence is a duality between two 3d $\mathscr{N}=2$ theories:

$$
T\left[L_{K}\right] \longleftrightarrow T\left[Q_{K}\right]
$$

- We already know that

$$
Z\left(T^{\prime}\left[L_{K}\right]\right)=P^{K}(x, a, q)
$$

- We can calculate the partition function of $T\left[Q_{K}\right]$ and indeed $Z\left(T\left[Q_{K}{ }^{1}\right]\right)=P Q_{K}(x, q)$

[^4]General idea

Duality

- Physical meaning of the knots-quivers correspondence is a duality between two 3d $\mathscr{N}=2$ theories:

$$
T\left[L_{K}\right] \longleftrightarrow T\left[Q_{K}\right]
$$

- We already know that

$$
Z\left(T\left[L_{K}\right]\right)=P^{K}(x, a, q)
$$

- We can calculate the partition function of $T\left[Q_{K}\right]$ and indeed $Z\left(T\left[Q_{K}\right]\right)=P^{Q_{K}}(x, q)$

[^5]
Duality

- Physical meaning of the knots-quivers correspondence is a duality between two 3d $\mathscr{N}=2$ theories:

$$
T\left[L_{K}\right] \longleftrightarrow T\left[Q_{K}\right]
$$

- We already know that

$$
Z\left(T\left[L_{K}\right]\right)=P^{K}(x, a, q)
$$

- We can calculate the partition function of $T\left[Q_{K}\right]$ and indeed

$$
Z\left(T\left[Q_{K}\right]\right)=P^{Q_{K}}(\mathrm{x}, q)
$$

[^6]General idea

Outline

(1) Introduction

- Knots
- Quivers
- Knots-quivers correspondence
(2) Physics and geometry of KQ correspondence
- General idea
- Physics
- Geometry
(3) Summary

General idea

Quiver nodes extracted from motivic generating series

- Let's look at motivic generating series restricted to $|\mathbf{d}|=1$

$$
P_{|\mathbf{d}|=1}^{Q_{K}}(\mathrm{x}, q)=\sum_{i \in Q_{0}} \frac{(-q)^{C_{i i} x_{i}}}{1-q^{2}}
$$

- Every vertex $\left(i \in Q_{0}\right)$ contributes once

- No interactions between different nodes
- What is the meaning of $P_{|\mathbf{d}|=1}^{Q_{K}}(\mathrm{x}, q)$?

General idea

Quiver nodes extracted from motivic generating series

- Let's look at motivic generating series restricted to $|\mathbf{d}|=1$

$$
P_{|\mathbf{d}|=1}^{Q_{K}}(\mathrm{x}, q)=\sum_{i \in Q_{0}} \frac{(-q)^{C_{i i} x_{i}}}{1-q^{2}}
$$

- Every vertex $\left(i \in Q_{0}\right)$ contributes once
- No interactions between different nodes

(3)
- What is the meaning of $P_{|\mathbf{d}|=1}^{Q_{K}}(\mathrm{x}, q)$?

Quiver nodes extracted from motivic generating series

- Let's look at motivic generating series restricted to $|\mathbf{d}|=1$

$$
P_{|\mathbf{d}|=1}^{Q_{K}}(x, q)=\sum_{i \in Q_{0}} \frac{(-q)^{C_{i i}} x_{i}}{1-q^{2}}
$$

- Every vertex $\left(i \in Q_{0}\right)$ contributes once
- No interactions between different nodes

- What is the meaning of $P_{|\mathrm{d}|=1}^{Q_{K}}(\mathrm{x}, q)$?

Quiver nodes extracted from motivic generating series

- Let's look at motivic generating series restricted to $|\mathbf{d}|=1$

$$
P_{|\mathbf{d}|=1}^{Q_{K}}(\mathrm{x}, q)=\sum_{i \in Q_{0}} \frac{(-q)^{C_{i i} x_{i}}}{1-q^{2}}
$$

- Every vertex $\left(i \in Q_{0}\right)$ contributes once
- No interactions between different nodes
- What is the meaning of $P_{|\mathbf{d}|=1}^{Q_{K}}(\mathbf{x}, q)$?

General idea

Quiver nodes as homology generators

- Let's apply KQ change of variables

$$
\left.P_{|\mathbf{d}|=1}^{Q_{K}}(\mathbf{x}, q)\right|_{x_{i}=a^{a_{i}} q^{q_{i}-} c_{i i x}}=P_{1}^{K}(a, q) x
$$

- $P_{1}^{K}(a, q)$ is an Euler characteristic of HOMFLY-PT homology $\mathscr{H}(K)$ with set of generators $\mathscr{G}(K)$, so
- Each vertex corresponds to the homology generator
- KQ change of variables is encoded in homological degrees

Quiver nodes as homology generators

- Let's apply KQ change of variables

$$
\left.P_{|\mathbf{d}|=1}^{Q_{K}}(\mathbf{x}, q)\right|_{x_{i}=a^{a_{i}} q^{q_{i}-} c_{i i x}}=P_{1}^{K}(a, q) x
$$

- $P_{1}^{K}(a, q)$ is an Euler characteristic of HOMFLY-PT homology $\mathscr{H}(K)$ with set of generators $\mathscr{G}(K)$, so

$$
\left.\sum_{i \in Q_{0}} \frac{(-q)^{c_{i i}} x_{i}}{1-q^{2}}\right|_{x_{i}=a^{a_{i}} q^{q_{i}-c_{i i x}}}=\frac{\sum_{i \in \mathscr{G}(K)} a^{a_{i}} q^{q_{i}}(-1)^{c_{i i}}}{1-q^{2}} x
$$

- Each vertex corresponds to the homology generator
- KQ change of variables is encoded in homological degrees

Quiver nodes as homology generators

- Let's apply KQ change of variables

$$
\left.P_{|\mathbf{d}|=1}^{Q_{K}}(\mathbf{x}, q)\right|_{x_{i}=a^{a_{i}} q^{q_{i}-} c_{i i x}}=P_{1}^{K}(a, q) x
$$

- $P_{1}^{K}(a, q)$ is an Euler characteristic of HOMFLY-PT homology $\mathscr{H}(K)$ with set of generators $\mathscr{G}(K)$, so

$$
\left.\sum_{i \in Q_{0}} \frac{(-q)^{C_{i i}} x_{i}}{1-q^{2}}\right|_{x_{i}=a^{a_{i}} q^{q_{i}-c_{i i x}}}=\frac{\sum_{i \in \mathscr{G}(K)} a^{a_{i}} q^{q_{i}}(-1)^{c_{i i}}}{1-q^{2}} x
$$

- Each vertex corresponds to the homology generator
- KQ change of variables is encoded in homological

Quiver nodes as homology generators

- Let's apply KQ change of variables

$$
\left.P_{|\mathbf{d}|=1}^{Q_{K}}(\mathbf{x}, q)\right|_{x_{i}=a^{a_{i}} q^{q_{i}-} c_{i i x}}=P_{1}^{K}(a, q) x
$$

- $P_{1}^{K}(a, q)$ is an Euler characteristic of HOMFLY-PT homology $\mathscr{H}(K)$ with set of generators $\mathscr{G}(K)$, so

$$
\left.\sum_{i \in Q_{0}} \frac{(-q)^{C_{i i}} x_{i}}{1-q^{2}}\right|_{x_{i}=a^{a_{i}} q^{q_{i}-c_{i i x}}}=\frac{\sum_{i \in \mathscr{G}(K)} a^{a_{i}} q^{q_{i}}(-1)^{c_{i i}}}{1-q^{2}} x
$$

- Each vertex corresponds to the homology generator
- KQ change of variables is encoded in homological degrees

General idea

Quiver nodes as BPS states

- Generators of uncoloured homology correspond to BPS states [Gukov, Schwarz, Vafa]

- Quiver nodes correspond to BPS states of $T\left[L_{K}\right]$ counted by LMOV invariants

- ...or BPS states of $T\left[Q_{K}\right]$ counted by DT invariants

Quiver nodes as BPS states

- Generators of uncoloured homology correspond to BPS states [Gukov, Schwarz, Vafa]
- Quiver nodes correspond to BPS states of $T\left[L_{K}\right]$ counted by LMOV invariants

$$
\left.\sum_{i \in Q_{0}} \frac{(-q)^{C_{i i}} x_{i}}{1-q^{2}}\right|_{x_{i}=a^{a_{i}} q^{q_{i}-c_{i i x}}}=\frac{N_{1}^{K}(a, q)}{1-q^{2}} x
$$

- ...or BPS states of $T\left[Q_{K}\right]$ counted by DT invariants

Quiver nodes as BPS states

- Generators of uncoloured homology correspond to BPS states [Gukov, Schwarz, Vafa]
- Quiver nodes correspond to BPS states of $T\left[L_{K}\right]$ counted by LMOV invariants

$$
\left.\sum_{i \in Q_{0}} \frac{(-q)^{C_{i i}} x_{i}}{1-q^{2}}\right|_{x_{i}=a^{a_{i}} q^{q_{i}-c_{i i x}}}=\frac{N_{1}^{K}(a, q)}{1-q^{2}} x
$$

- ...or BPS states of $T\left[Q_{K}\right]$ counted by DT invariants

$$
\sum_{i \in Q_{0}} \frac{(-q)^{C_{i i}} x_{i}}{1-q^{2}}=\frac{\Omega_{|\mathbf{d}|=1}^{Q_{K}}(\mathbf{x}, q)}{1-q^{2}}
$$

General idea

Quiver nodes as holomorphic disks

- Recall: M2 branes are BPS states on the flat side and holomorphic disks on the Calabi-Yau side
- We can reinterpret topological data of KQ change of variables in the language of disks:
- nower r in $x^{r} \longrightarrow$ \#windings around L_{K}
- power a_{i} in $a^{a_{i}} \longrightarrow$ \#wrappings around base S^{2}
- power q_{i} in $q^{q_{i}} \longrightarrow$ invariant self-linking $\#$
- $C_{i i}=t_{i} \longrightarrow$ linking\# between disk and its small shift
- Quiver nodes correspond to basic disks - holomorphic curves that wind around L_{K} once $(r=1)$

General idea

Quiver nodes as holomorphic disks

- Recall: M2 branes are BPS states on the flat side and holomorphic disks on the Calabi-Yau side
- We can reinterpret topological data of KQ change of variables in the language of disks:
- power r in $x^{r} \longrightarrow \#$ windings around L_{K}
- power a_{i} in $a^{a_{i}} \longrightarrow$ \#wrappings around base S^{2}
- power q_{i} in $q^{q_{i}} \longrightarrow$ invariant self-linking $\#$
- $C_{i i}=t_{i} \longrightarrow$ linking\# between disk and its small shift
- Quiver nodes correspond to basic disks - holomorphic curves that wind around L_{K} once $(r=1)$

Quiver nodes as holomorphic disks

- Recall: M2 branes are BPS states on the flat side and holomorphic disks on the Calabi-Yau side
- We can reinterpret topological data of KQ change of variables in the language of disks:
- power r in $x^{r} \longrightarrow$ \#windings around L_{K}
- power a_{i} in $a^{a_{i}} \longrightarrow$ \#wrappings around base S^{2}
- power q_{i} in $q^{q_{i}} \longrightarrow$ invariant self-linking $\#$
- $C_{i i}=t_{i} \longrightarrow$ linking\# between disk and its small shift
- Quiver nodes correspond to basic disks - holomorphic curves that wind around L_{K} once $(r=1)$

Quiver nodes as holomorphic disks

- Recall: M2 branes are BPS states on the flat side and holomorphic disks on the Calabi-Yau side
- We can reinterpret topological data of KQ change of variables in the language of disks:
- power r in $x^{r} \longrightarrow$ \#windings around L_{K}
- power a_{i} in $a^{a_{i}} \longrightarrow$ \#wrappings around base S^{2}
- power q_{i} in $q^{q_{i}} \longrightarrow$ invariant self-linking $\#$
- $C_{i i}=t_{i} \longrightarrow$ linking\# between disk and its small shift
- Quiver nodes correspond to basic disks - holomorphic curves that wind around L_{K} once $(r=1)$

Quiver nodes as holomorphic disks

- Recall: M2 branes are BPS states on the flat side and holomorphic disks on the Calabi-Yau side
- We can reinterpret topological data of KQ change of variables in the language of disks:
- power r in $x^{r} \longrightarrow$ \#windings around L_{K}
- power a_{i} in $a^{a_{i}} \longrightarrow$ \#wrappings around base S^{2}
- power q_{i} in $q^{q_{i}} \longrightarrow$ invariant self-linking\#
- $C_{i i}=t_{i} \longrightarrow$ linking\# between disk and its small shift
- Quiver nodes correspond to basic disks - holomorphic curves that wind around L_{K} once $(r=1)$

Quiver nodes as holomorphic disks

- Recall: M2 branes are BPS states on the flat side and holomorphic disks on the Calabi-Yau side
- We can reinterpret topological data of KQ change of variables in the language of disks:
- power r in $x^{r} \longrightarrow$ \#windings around L_{K}
- power a_{i} in $a^{a_{i}} \longrightarrow$ \#wrappings around base S^{2}
- power q_{i} in $q^{q_{i}} \longrightarrow$ invariant self-linking\#
- $C_{i i}=t_{i} \longrightarrow$ linking\# between disk and its small shift
- Quiver nodes correspond to basic disks - holomorphic curves that wind around L_{K} once $(r=1)$

Quiver nodes as holomorphic disks

- Recall: M2 branes are BPS states on the flat side and holomorphic disks on the Calabi-Yau side
- We can reinterpret topological data of KQ change of variables in the language of disks:
- power r in $x^{r} \longrightarrow$ \#windings around L_{K}
- power a_{i} in $a^{a_{i}} \longrightarrow$ \#wrappings around base S^{2}
- power q_{i} in $q^{q_{i}} \longrightarrow$ invariant self-linking\#
- $C_{i i}=t_{i} \longrightarrow$ linking\# between disk and its small shift
- Quiver nodes correspond to basic disks - holomorphic curves that wind around L_{K} once ($r=1$)

[^7]General idea

Example: unknot quiver vertices and homology

- For the unknot quiver we have

$$
P_{|\mathbf{d}|=1}^{Q_{0_{1}}}(\mathrm{x}, q)=\frac{-q x_{1}+x_{2}}{1-q^{2}}
$$

- $\mathscr{H}\left(0_{1}\right)$ has two generators with degrees

$$
\begin{aligned}
& \left(a_{1}, a_{2}\right)=(2,0), \quad\left(q_{1}, q_{2}\right)=(0,0) \\
& \left(t_{1}, t_{2}\right)=(1,0)=\left(C_{11}, c_{22}\right)
\end{aligned}
$$

- Generators correspond to quiver vertices and their degrees encode KQ change of variables $x_{1}=a^{2} q^{-1} x, x_{2}=x$ giving

Example: unknot quiver vertices and homology

- For the unknot quiver we have

$$
P_{|\mathbf{d}|=1}^{Q_{0_{1}}}(\mathrm{x}, q)=\frac{-q x_{1}+x_{2}}{1-q^{2}}
$$

- $\mathscr{H}\left(0_{1}\right)$ has two generators with degrees

$$
\begin{aligned}
\left(a_{1}, a_{2}\right) & =(2,0), \quad\left(q_{1}, q_{2}\right)=(0,0) \\
\left(t_{1}, t_{2}\right) & =(1,0)=\left(C_{11}, C_{22}\right)
\end{aligned}
$$

- Generators correspond to quiver vertices and their degrees encode KQ change of variables $x_{1}=a^{2} q^{-1} x, x_{2}=x$ giving

Example: unknot quiver vertices and homology

- For the unknot quiver we have

$$
P_{|\mathbf{d}|=1}^{Q_{0_{1}}}(\mathrm{x}, q)=\frac{-q x_{1}+x_{2}}{1-q^{2}}
$$

- $\mathscr{H}\left(0_{1}\right)$ has two generators with degrees

$$
\begin{aligned}
\left(a_{1}, a_{2}\right) & =(2,0), \quad\left(q_{1}, q_{2}\right)=(0,0) \\
\left(t_{1}, t_{2}\right) & =(1,0)=\left(C_{11}, C_{22}\right)
\end{aligned}
$$

- Generators correspond to quiver vertices and their degrees encode KQ change of variables $x_{1}=a^{2} q^{-1} x, x_{2}=x$ giving

$$
P_{1}^{0_{1}}(a, q) x=\frac{-a^{2} x+x}{1-q^{2}}=\frac{\sum_{i \in \mathscr{G}\left(0_{1}\right)} a^{a_{i}} q^{q_{i}}(-1)^{c_{i i}}}{1-q^{2}} x
$$

Example: unknot quiver vertices and BPS states

- Two generators of $\mathscr{H}\left(0_{1}\right)$ correspond to two BPS states
- BPS states of $T\left[L_{0_{1}}\right]$ are counted by LMOV invariants
- BPS states of $T\left[Q_{0_{1}}\right]$ are counted by DT
 invariants

Example: unknot quiver vertices and BPS states

- Two generators of $\mathscr{H}\left(0_{1}\right)$ correspond to two BPS states
- BPS states of $T\left[L_{0_{1}}\right]$ are counted by LMOV invariants

$$
N_{1}^{0_{1}}(a, q)=1-a^{2}
$$

- BPS states of $T\left[Q_{0_{1}}\right]$ are counted by DT
 invariants

Example: unknot quiver vertices and BPS states

- Two generators of $\mathscr{H}\left(0_{1}\right)$ correspond to two BPS states
- BPS states of $T\left[L_{0_{1}}\right]$ are counted by LMOV invariants

$$
N_{1}^{0_{1}}(a, q)=1-a^{2}
$$

- BPS states of $T\left[Q_{0_{1}}\right]$ are counted by DT
 invariants

$$
\Omega_{|\mathbf{d}|=1}^{Q_{0_{1}}}(x, q)=-q x_{1}+x_{2}
$$

Example: unknot quiver vertices and holomorphic disks

- Two BPS states on the flat side \longleftrightarrow two holomorphic disks on the Calabi-Yau side
- For the first we have the following intepretation of topological data in KQ change of variables:
- $r=1 \longrightarrow$ winding around L_{K}
- $a_{1}=2 \longrightarrow$ wrappings around base S^{2}
- $q_{1}=0 \longrightarrow$ invariant self-linking
- $C_{11}=1 \longrightarrow$ linking between disk and its small shift

Example: unknot quiver vertices and holomorphic disks

- Two BPS states on the flat side \longleftrightarrow two holomorphic disks on the Calabi-Yau side
- For the first we have the following intepretation of topological data in KQ change of variables:
- $r=1 \longrightarrow$ winding around L_{K}
- $a_{1}=2 \longrightarrow$ wrappings around base S^{2}
- $q_{1}=0 \longrightarrow$ invariant self-linking
- $C_{11}=1 \longrightarrow$ linking between disk and its small shift

Example: unknot quiver vertices and holomorphic disks

- Two BPS states on the flat side \longleftrightarrow two holomorphic disks on the Calabi-Yau side
- For the second we have the following intepretation of topological data in KQ change of variables:
- $r=1 \longrightarrow$ winding around L_{K}
- $a_{2}=0 \longrightarrow$ wrappings around base S^{2}
- $q_{2}=0 \longrightarrow$ invariant self-linking
- $C_{22}=0 \longrightarrow$ linking between disk and its small shift

Physics and geometry of KQ correspondence Summary

General idea

Quiver arrows extracted from motivic generating series

- Let's look closer at motivic generating series

$$
P^{Q}(\mathrm{x}, q):=\sum_{d_{1}, \ldots, d_{\left|Q_{0}\right|} \geq 0}(-q)^{\sum_{1 \leq i, j \leq\left|Q_{0}\right|} C_{i, j} d_{i} d_{j}} \prod_{i=1}^{\left|Q_{0}\right|} \frac{x_{i}^{d_{i}}}{\left(q^{2} ; q^{2}\right) d_{i}}
$$

- Dimension d_{i} encodes the number of factors corresponding to i-th vertex
- \#arrows encodes interactions between vertices $i \& j$
- Motivic generating series counts all objects that can be made from basic ones (nodes) according

Quiver arrows extracted from motivic generating series

- Let's look closer at motivic generating series

$$
P^{Q}(\mathrm{x}, q):=\sum_{d_{1}, \ldots, d_{\left|Q_{0}\right|} \geq 0}(-q)^{\sum_{1 \leq i, j \leq\left|Q_{0}\right|} C_{i, j} d_{i} d_{j}} \prod_{i=1}^{\left|Q_{0}\right|} \frac{x_{i}^{d_{i}}}{\left(q^{2} ; q^{2}\right)_{d_{i}}}
$$

- Dimension d_{i} encodes the number of factors corresponding to i-th vertex
- \#arrows
encodes interactions between
- Motivic generating series counts all objects that can be made from basic ones (nodes) according

Quiver arrows extracted from motivic generating series

- Let's look closer at motivic generating series

$$
P^{Q}(\mathrm{x}, q):=\sum_{d_{1}, \ldots, d_{\left|Q_{0}\right|} \geq 0}(-q)^{\sum_{1 \leq i, j \leq\left|Q_{0}\right|} c_{i, j} d_{i} d_{j}} \prod_{i=1}^{\left|Q_{0}\right|} \frac{x_{i}^{d_{i}}}{\left(q^{2} ; q^{2}\right)_{d_{i}}}
$$

- Dimension d_{i} encodes the number of factors corresponding to i-th vertex
- \#arrows $C_{i, j}$ encodes interactions between vertices $i \& j$
- Motivic generating series counts all objects that can be made from basic ones (nodes) according

Quiver arrows extracted from motivic generating series

- Let's look closer at motivic generating series

$$
P^{Q}(\mathrm{x}, q):=\sum_{d_{1}, \ldots, d_{\left|Q_{0}\right|} \geq 0}(-q)^{\sum_{1 \leq i, j \leq\left|Q_{0}\right|} c_{i, j} d_{i} d_{j}} \prod_{i=1}^{\left|Q_{0}\right|} \frac{x_{i}^{d_{i}}}{\left(q^{2} ; q^{2}\right)_{d_{i}}}
$$

- Dimension d_{i} encodes the number of factors corresponding to i-th vertex
- \#arrows $C_{i, j}$ encodes interactions between vertices $i \& j$
- Motivic generating series counts all objects that can be made from basic ones (nodes) according
 to quiver arrows

General idea

Quiver arrows as disk intersections

- Geometrically $P^{Q}(x, q)$ counts all holomorphic curves that can be made from basic disks according to quiver arrows
- Dimension vector $d_{i} \longrightarrow$ \#copies of the disk

- \#arrows $C_{i, j} \longrightarrow$ disk boundaries linking\#
- Example: one pair of arrows corresponds to two bagel disk boundaries with linking\# $=1$

General idea

Quiver arrows as disk intersections

- Geometrically $P^{Q}(x, q)$ counts all holomorphic curves that can be made from basic disks according to quiver arrows
- Dimension vector $d_{i} \longrightarrow$ \#copies of the disk

- \#arrows $C_{i, j} \longrightarrow$ disk boundaries linking\#
- Example: one pair of arrows corresponds to two bagel disk boundaries with linking\# = 1

[^8]
Quiver arrows as disk intersections

- Geometrically $P^{Q}(x, q)$ counts all holomorphic curves that can be made from basic disks according to quiver arrows
- Dimension vector $d_{i} \longrightarrow$ \#copies of the disk

- \#arrows $C_{i, j} \longrightarrow$ disk boundaries linking\#
- Example: one pair of arrows corresponds to two bagel disk boundaries with linking\# = 1

Quiver arrows as disk intersections

- Geometrically $P^{Q}(x, q)$ counts all holomorphic curves that can be made from basic disks according to quiver arrows
- Dimension vector $d_{i} \longrightarrow$ \#copies of the disk

- \#arrows $C_{i, j} \longrightarrow$ disk boundaries linking\#
- Example: one pair of arrows corresponds to two bagel disk boundaries with linking\# = 1

Main messages

- Physically knots-quivers correspondence is a duality between 3d $\mathscr{N}=2$ theories $T\left[L_{K}\right]$ and $T\left[Q_{K}\right]$
- Quiver elements can be intepreted in terms of $T\left[Q_{K}\right]$ data as well as holomorphic disks:

- More details in the paper - coming soon!

Main messages

- Physically knots-quivers correspondence is a duality between 3d $\mathscr{N}=2$ theories $T\left[L_{K}\right]$ and $T\left[Q_{K}\right]$
- Quiver elements can be intepreted in terms of $T\left[Q_{K}\right]$ data as well as holomorphic disks:

	Physics	Geometry
	$U(1)$ gauge group	Holomorphic disk
	Chern-Simons coupling	Disk boundaries linking

Main messages

- Physically knots-quivers correspondence is a duality between 3d $\mathscr{N}=2$ theories $T\left[L_{K}\right]$ and $T\left[Q_{K}\right]$
- Quiver elements can be intepreted in terms of $T\left[Q_{K}\right]$ data as well as holomorphic disks:

	Physics	Geometry
	$U(1)$ gauge group	Holomorphic disk
	Chern-Simons coupling	Disk boundaries linking

- More details in the paper - coming soon!

Last message

Thank you for your attention!

[^0]: P. Kucharski

 Physics and geometry of KQ correspondence

[^1]: P. Kucharski

[^2]: P. Kucharski

[^3]: P. Kucharski

[^4]: P. Kucharski

 Physics and geometry of KQ correspondence

[^5]: P. Kucharski

 Physics and geometry of KQ correspondence

[^6]: P. Kucharski

 Physics and geometry of KQ correspondence

[^7]: P. Kucharski

[^8]: P. Kucharski

 Physics and geometry of KQ correspondence

