3d Modularity

Miranda C. N. Cheng University of Amsterdam

European Research Council Established by the European Commission

UNIVERSITEIT VAN AMSTERDAM

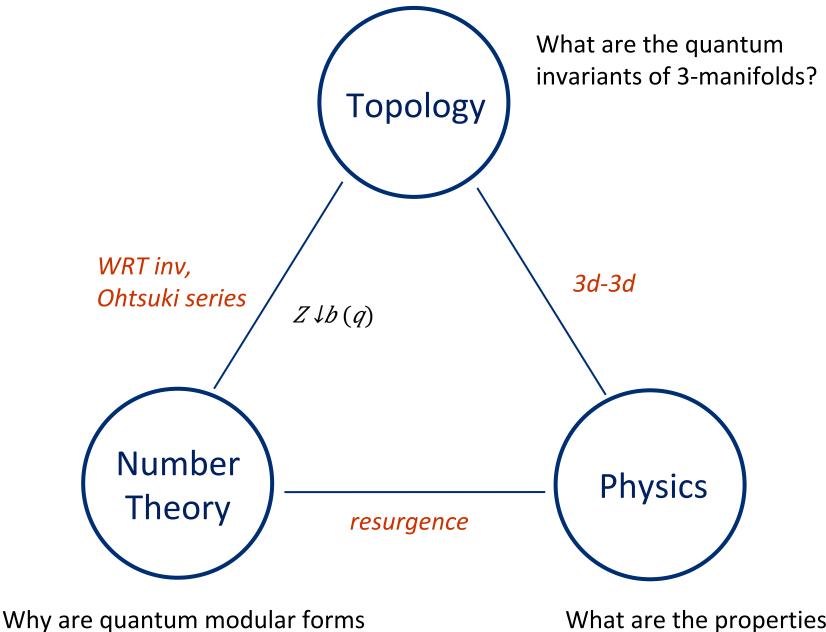
Based on joint work with

Sungbong Chun

Francesca Ferrari

Sergei Gukov

Sarah Harrison



Why are quantum modular form natural?

What are the properties of 3d *N*=2 theories?

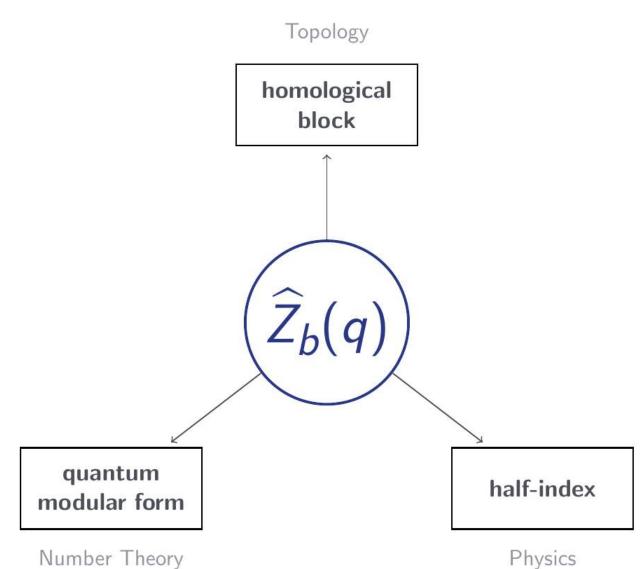
Outline

I. What is $\widehat{Z}_b(q)$?

II. What are False Theta Functions?

III. The False-Mock Pair and Quantum Modular Forms

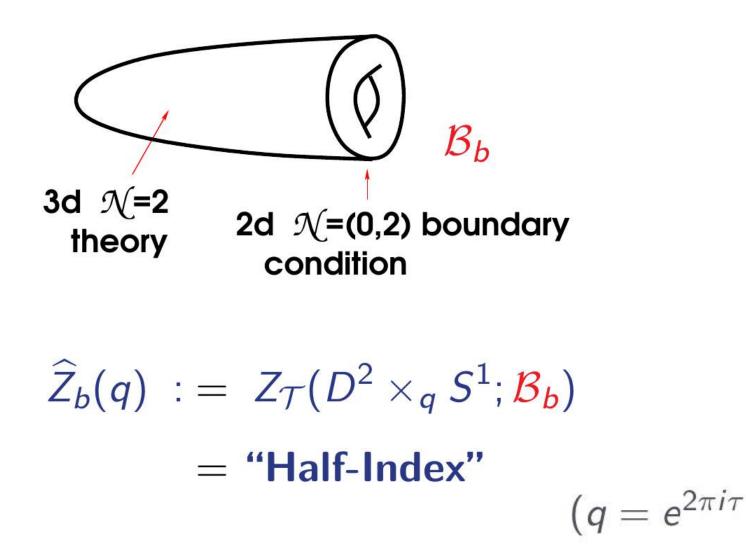
I. What is $\widehat{Z}_b(q)$?

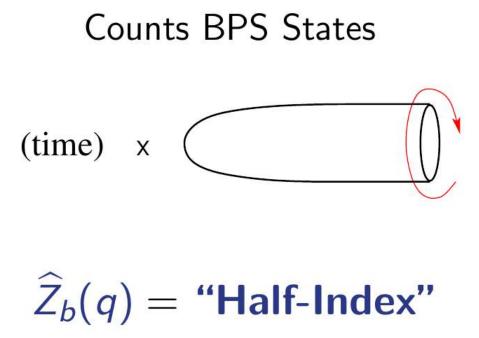


Number Theory

I. What is $\hat{Z}_b(q)$? 3d-2d Physics/ 3d-3d Corr./ Examples

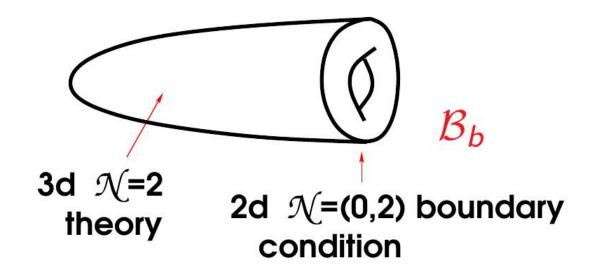
Bulk 3d Coupled to Boundary 2d Systems





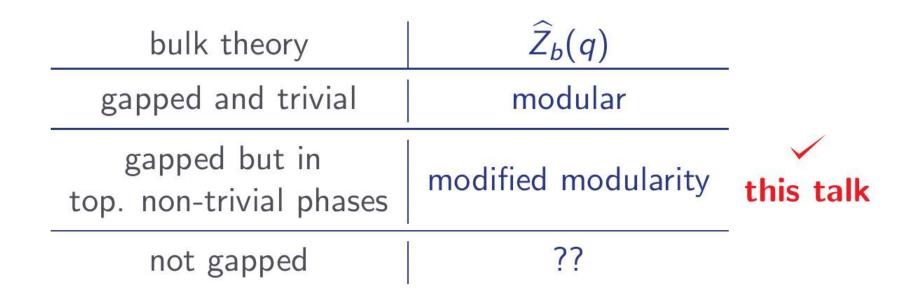
 $\in q^{\Delta}\mathbb{Z}[[q]]$

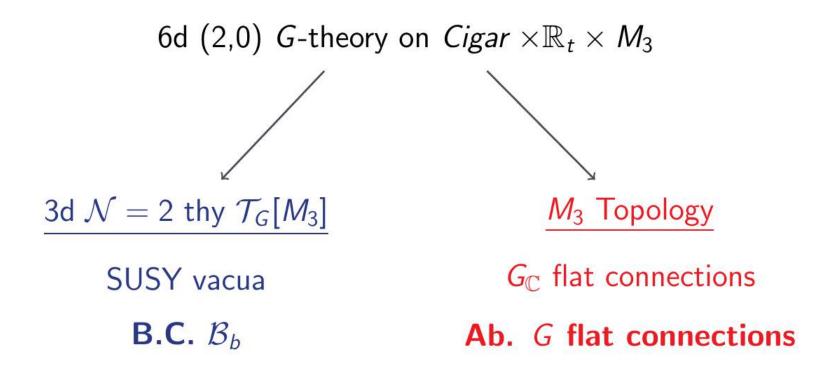
Localisation \Rightarrow Contour integral



$$\widehat{Z}_{b}(q) := Z_{\mathcal{T}}(D^{2} \times_{q} S^{1}; \mathcal{B}_{b})$$
$$= \int \frac{dx}{2\pi i x} F_{3d}(x) \Theta_{2d,(b)}(x; q)$$

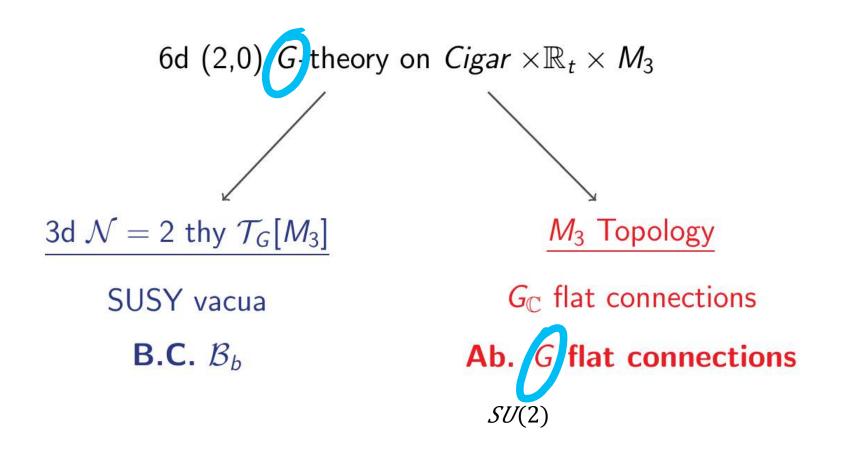
$$\widehat{Z}_b(q) = \int \frac{dx}{2\pi i x} F_{3d}(x) \Theta_{2d,(b)}(x;q)$$



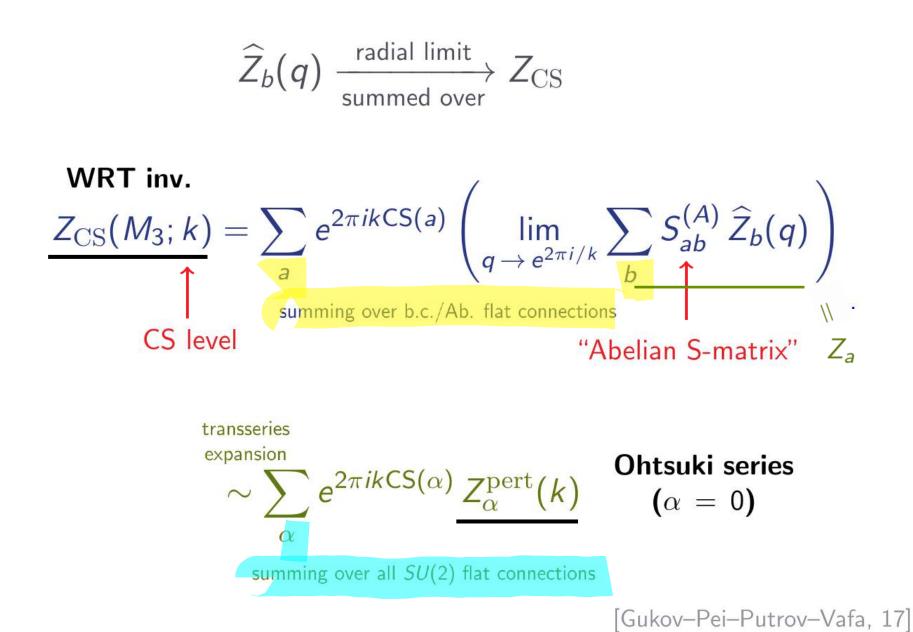


[Gukov–Pei–Putrov–Vafa, 17]

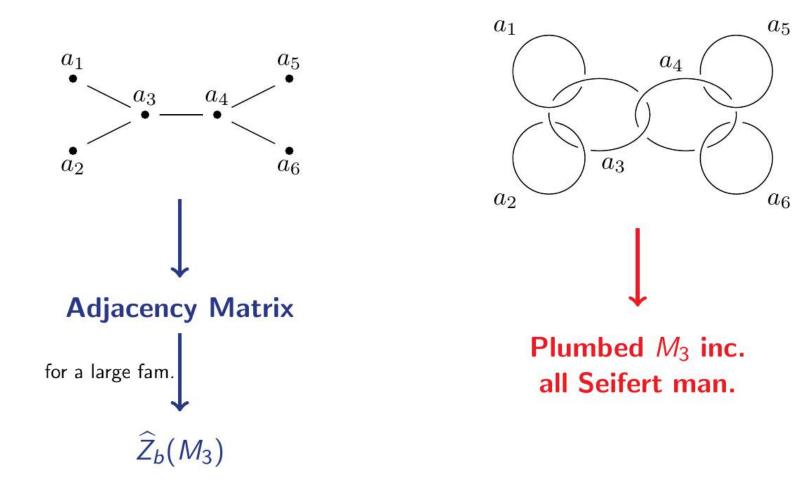
I. What is $\widehat{Z}_b(q)$? 3d-2d Physics/ 3d-3d Corr./ Examples

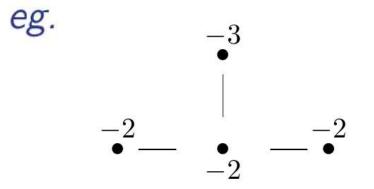


 $\widehat{Z}_{b}(q)$ with $b \in (\operatorname{Tor} H_{1}(M_{3},\mathbb{Z}))^{*}/\mathbb{Z}_{2} \cong \pi_{0} \mathcal{M}_{\mathsf{flat}}^{\mathsf{Ab.}}$



Plumbed Three-Manifolds





$$\begin{split} \widehat{Z}_1(M_3;q) &= q^{-\frac{3}{8}}(1-q+q^2+\dots) = q^{-\frac{5}{12}}(\Psi_{6,1}-\Psi_{6,5})(\tau) \\ \widehat{Z}_2(M_3;q) &= q^{-\frac{1}{4}}(1+q^4+\dots) = q^{-\frac{5}{12}}\Psi_{6,2}(\tau) \end{split}$$

previous related works [Lawrence–Zagier 99, Hikami 05-06]

II. What are false theta functions?

 $\widehat{Z}_b(q) \sim \Psi_{m,r}$ 77

$$\Psi_{m,r}(\tau) = \sum_{\substack{\ell \in \mathbb{Z} \\ \ell = r \mod 2m}} \underline{\operatorname{sgn}(\ell)} q^{\ell^2/4m}$$

Relation to modular forms:

weight w mod. form $\xrightarrow{\text{Eichler}}_{\text{integral}}$ another q series $g = \sum_{n>0} a_g(n)q^n \xrightarrow{\text{Eichler}}_{\text{integral}} \quad \widetilde{g}(\tau) := \sum_{n>0} n^{1-w}a_g(n)q^n$

(usual
$$\theta$$
-function)
 $\theta_{m,r}(\tau, z) = \sum_{\ell=r \mod 2m} q^{\ell^2/4m} y^{\ell}$
 $\int \frac{\partial}{\partial z} (\dots)|_{z=0}$
 $\theta_{m,r}^1(\tau) = \sum_{\ell=r \mod 2m} \ell q^{\ell^2/4m} \xrightarrow{\text{Eichler}}_{\text{integral}} \qquad \Psi_{m,r} = \widetilde{\theta_{m,r}^1}$
(weight 3/2 θ -function)

$$\theta_m = (\theta_{m,r})$$
 $SL_2(\mathbb{Z})$ "Weil" representation
in general *not* irrep

Consider eigen-spaces of the orthogonal group: $O_m := \{a \in \mathbb{Z}/2m \mid a^2 = 1 \mod (4m)\}$ $a : \theta_{m,r} \mapsto \theta_{m,r}$

A useful label:

 $O_m \cong \operatorname{Ex}_m = \operatorname{group} \operatorname{of} \operatorname{exact} \operatorname{divisors} \operatorname{of} m$ \cup K : labels the +1 eigenspace

eg.

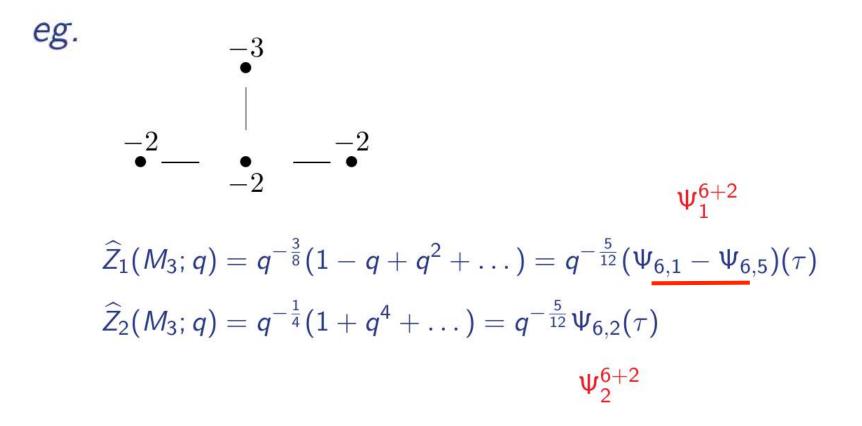
$$\Psi_{1}^{42+6,14,21}(\tau) = (\Psi_{42,1} - \Psi_{42,13} - \Psi_{42,29} + \Psi_{42,41})(\tau)$$
$$= q^{1/168}(1 - q - q^5 + O(q^{10}))$$
$$m = 42 \ K = \{1, 6, 14, 21\} \ 3\text{-dim irren}$$

 $m = 42, K = \{1, 6, 14, 21\}, 3$ -dim irrep

 $\widehat{Z}_0(M_3; q) \sim \Psi_1^{42+6, 14, 21}(\tau)$ for $M_3 = \Sigma(2, 3, 7)$ Brieskorn sphere .

Somehow 3-manifolds like irreps.

The other components of the vector will come to life as non-Ab flat conn.



Resurgence: pert. asympt. series \rightarrow an actual func. inc. non-pert. Techniques: Borel resummation

$$Z_{\text{pert}}(k) = \sum_{n} \frac{a_{n}}{k^{n}} \quad \left(\frac{1}{k} = \hbar\right)$$

$$\downarrow$$

$$BZ_{\text{pert}}(z) = \sum_{n} \frac{a_{n}}{\Gamma(n)} z^{n-1}$$

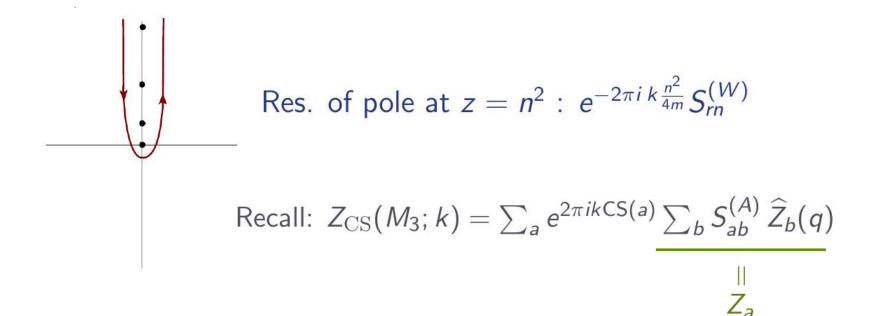
$$\downarrow$$

$$B\left(\frac{1}{\sqrt{k}}\Psi_{m,r}(\frac{1}{k})\right)(z) = \frac{1}{\sqrt{\pi z}} \frac{\sin((m-r)\sqrt{\frac{2\pi z}{m}})}{\sin(m\sqrt{\frac{2\pi z}{m}})}$$

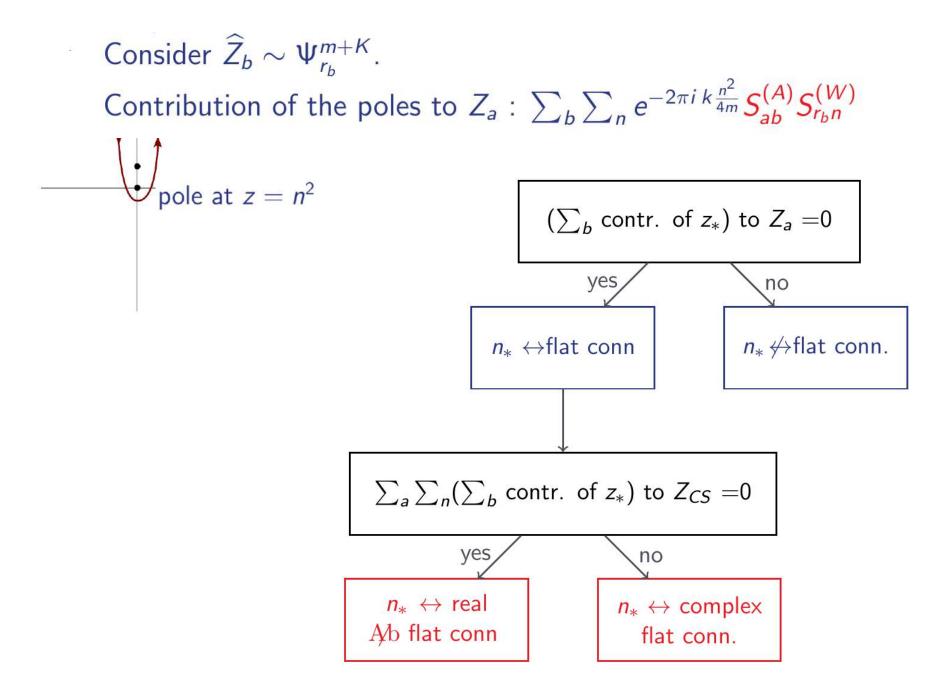
$$\downarrow$$

$$Z_{\text{tot}} = \int e^{-\tau z} BZ_{\text{pert}}(z) dz \quad \frac{1}{\sqrt{k}} \Psi_{m,r}(\frac{1}{k}) = \frac{\sqrt{i}}{2} \left(\int_{e^{i\delta}\mathbb{R}_{+}} + \int_{e^{-i\delta}\mathbb{R}_{+}}\right) \frac{dz}{\sqrt{\pi z}} \frac{\sin((m-r)\sqrt{\frac{2\pi z}{m}})}{\sin(m\sqrt{\frac{2\pi z}{m}})} e^{-ikz}$$

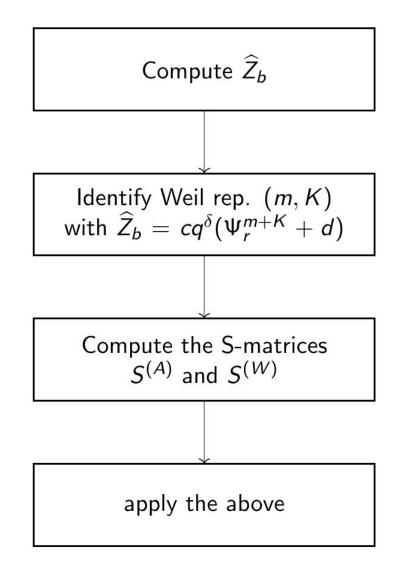
[Gukov–Marino–Putrov 16]



Consider $\widehat{Z}_b \sim \Psi_{r_b}^{m+K}$. Contribution of the poles to Z_a : $\sum_b \sum_n e^{-2\pi i k \frac{n^2}{4m}} S_{ab}^{(A)} S_{r_b n}^{(W)}$ Poles are grouped into orbits of $K \subset O_m$.



From plumbing data to flat connections.

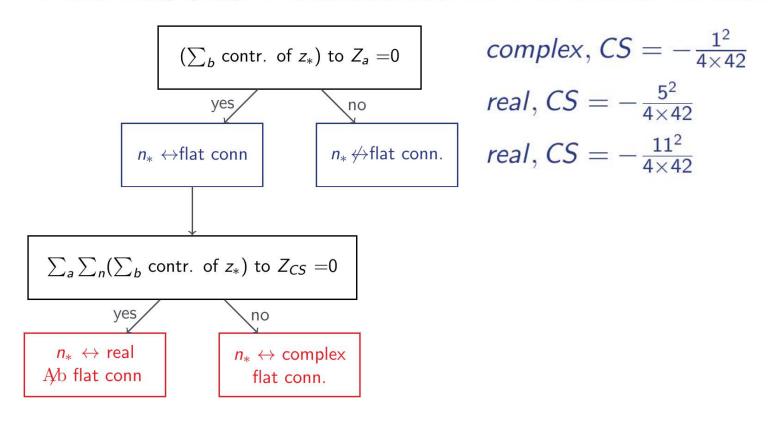


eg.

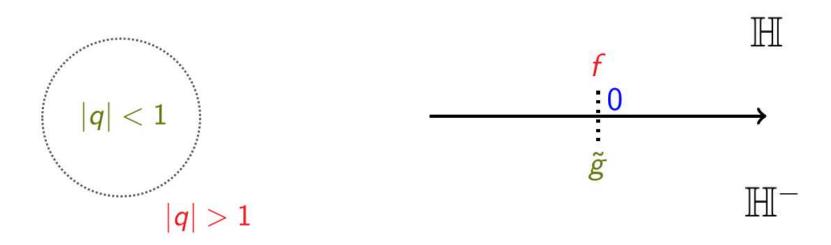
$$\widehat{Z}_0(M_3; q) \sim \Psi_1^{42+6, 14, 21}(\tau)$$

for $M_3 = \Sigma(2, 3, 7)$ Brieskorn sphere

3-dim $SL_2(\mathbb{Z})$ rep \Rightarrow 3 groups of poles \Rightarrow **3 non-Ab flat conn.**:

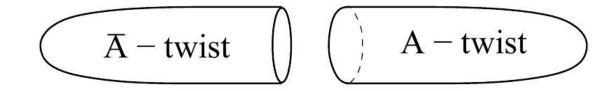


III. False, Mock, Quantum [Zagier 10]



3d $\mathcal{N} = 2$ Superconformal Index

$$egin{aligned} \mathcal{I}(q) &:= & \mathrm{Tr}_{\mathcal{H}_{S^2}}(-1)^F q^{R/2+J_3} \ &= & Z(S^2 imes_q S^1) & \in \mathbb{Z}[[q]] \end{aligned}$$



$$\sim \sum_{b} \widehat{Z}_{b}(q) \widehat{Z}_{b}(q^{-1})$$

[Gukov–Pei–Putrov–Vafa, 17]

What's this? Re-expand! But how?

From CS:

$$Z_{\alpha}^{\text{pert}}(M_{3};k) = \sum_{n} a_{n} (\frac{1}{k})^{n} \sum_{q \leftrightarrow q^{-1}} q \leftrightarrow q^{-1}$$
$$\Leftrightarrow Z_{\alpha}^{\text{pert}}(-M_{3};k) = \sum_{n} a_{n} (-\frac{1}{k})^{n} \sum_{q \leftrightarrow q^{-1}} q \leftrightarrow q^{-1}$$

$$\Rightarrow \widehat{Z}_b(M_3; q^{-1}) \sim \widehat{Z}_b(-M_3; q)$$
What's this?

Some *q*-hypergeometric series:

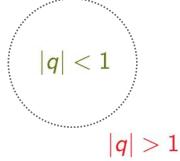
$$\psi(q) := rac{q^{rac{1}{24}}}{2} \left(1 - \sum_{n \geq 1} rac{(-1)^n q^{rac{n(n-1)}{2}}}{(1+q)(1+q^2)\dots(1+q^n)}
ight)$$

converges when |q| < 1 or |q| > 1

order 3 mock θ -func of Ramanujan

[Bringmann–Folsom–Rhoades 12]

"I discovered very interesting functions recently which I call "Mock" theta functions. Unlike the "False" theta functions they enter into mathematics as beautifully as ordinary theta functions.",



Def:

$$\begin{cases} f: \mathbb{H} \to \mathbb{C} & \text{holom., "mock}'' \\ \hat{f} = f - g^* & -\text{holom., mod.} \\ g^*(\tau) := C \int_{-\bar{\tau}}^{i\infty} (\tau' + \tau)^{-k} \overline{g(-\bar{\tau}')} \, d\tau' & \text{modular correction} \\ g = \text{shad}(f) & \text{mod.form, "shadow''} \end{cases}$$

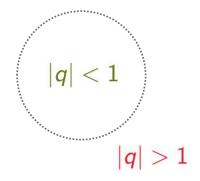
f is mock θ if shad(f) is a θ -func.

[Zwegers 02, ..., Zagier 07]

Example: a q-hypergeometric series

false:
$$\psi(q) = \Psi_1^{6+2}(\tau) = \theta_1^{6+2,1}(\tau)$$

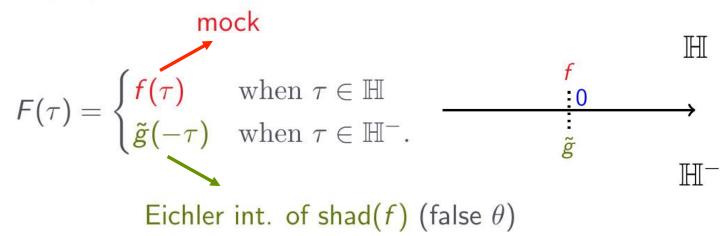
 $\uparrow \operatorname{shad}(f) = \theta_1^{6+2,1}$
 $\operatorname{mock:} \psi(q^{-1}) \sim f(q)$



Example: Rademacher sums

a regularised sum over $SL_2(\mathbb{Z})$ images

Theorem: In weight 1/2, a Rademacher sum defines a function F in \mathbb{H} and \mathbb{H}^- , satisfying



[Cheng–Duncan 13, Rhoades 18, CCFGH]

Recall: $\widehat{Z}_b(M_3; q^{-1}) \sim \widehat{Z}_b(-M_3; q)$

What's this? false-mock pair

How does that compare with expectations from CS?

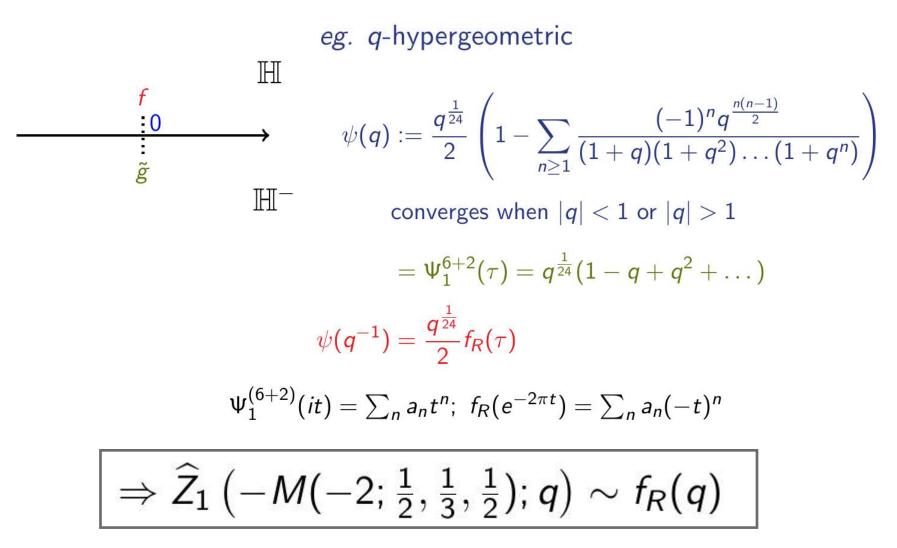
How does that compare with expectations from CS?

Up to possibly a "modular correction" G_0 , the asymp. series are just right!

 $(f - G_0)(it) \sim \sum_{n \ge 0} a_n (-t)^n$ and $\tilde{g}(it) \sim \sum_{n \ge 0} a_n t^n$

[Choi–Lim–Rhoades 16, CCFGH]

Another way to say this : f and \tilde{g} defines the same quantum modular form.



Conclusions

* **Resurgence & SL**₂(\mathbb{Z}) **rep.** help making top. predictions on flat connections.

* False/mock pairs help predicting \widehat{Z}_b when other means aren't available.

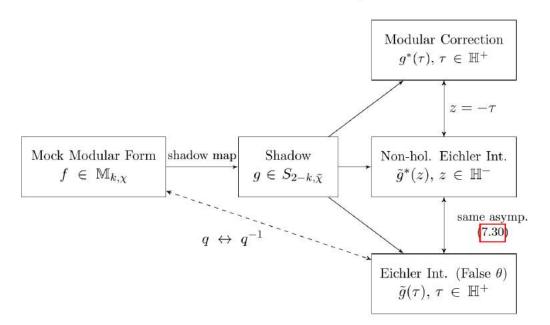
* **Quantum modular** structure guarantees the Z_{CS} interpretation.

 ★ In this talk we focus on Seifert w 3 singular fibers, but similar treatment applies to other Seifert manifolds.
 Hyperbolic 3-manifolds aren't expected to have blocks related to false/mock but should still be quantum.

Open Questions

 \star How do we understand the "symmetry" given by K from 3-manifolds or physics?

* The mock forms are not uniquely determined by the false. Sometimes there are natural choices but sometimes we do not know. Need more topological/physical input. Quantum Modular Forms



Open Questions

 \star How do we understand the "symmetry" given by K from 3-manifolds or physics?

* The mock forms are not uniquely determined by the false. Sometimes there are natural choices but sometimes we do not know. Need more topological/physical input.

 \star The "modular substraction" is mysterious from the physical point of view. Can we specify this ?