Khovanov homotopy type for periodic links

Maciej Borodzik

www.mimuw.edu.pl/~mcboro

joint with Wojciech Politarczyk and Marithania Silvero

Institute of Mathematics, University of Warsaw

Warsaw, 2018

• Consider a link diagram *D* with *n*-crossings. Label these crossings;

イロト イポト イヨト イヨト

- Consider a link diagram *D* with *n*-crossings. Label these crossings;
- Take an element $v = (v_1, ..., v_n) \in \{0, 1\}^n$;

<ロト <回 > < 回 > < 回 > < 回 > <

- Consider a link diagram *D* with *n*-crossings. Label these crossings;
- Take an element $v = (v_1, ..., v_n) \in \{0, 1\}^n$;
- D_v is a resolution depending on the crossing;

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

- Consider a link diagram *D* with *n*-crossings. Label these crossings;
- Take an element $v = (v_1, ..., v_n) \in \{0, 1\}^n$;
- D_v is a resolution depending on the crossing;

イロト 不得 トイヨト イヨト

- Consider a link diagram *D* with *n*-crossings. Label these crossings;
- Take an element $v = (v_1, ..., v_n) \in \{0, 1\}^n$;
- D_v is a resolution depending on the crossing;
- Each of the D_v is a disjoint union of $|D_v|$ circles.

イロト 不同 トイヨト イヨト

- Consider a link diagram *D* with *n*-crossings. Label these crossings;
- Take an element $v = (v_1, ..., v_n) \in \{0, 1\}^n$;
- D_v is a resolution depending on the crossing;
- Each of the D_v is a disjoint union of $|D_v|$ circles.
- Khovanov chain complex is from $V^{\otimes |D_v|}$ for dim V = 2.

イロト イポト イヨト イヨト

- Consider a link diagram *D* with *n*-crossings. Label these crossings;
- Take an element $v = (v_1, ..., v_n) \in \{0, 1\}^n$;
- D_v is a resolution depending on the crossing;
- Each of the D_v is a disjoint union of $|D_v|$ circles.
- Khovanov chain complex is from $V^{\otimes |D_v|}$ for dim V = 2.
- The differentials are elementary cobordisms.

• V has two generators x_+ and x_- ;

イロト 不得 トイヨト イヨト

- V has two generators x₊ and x₋;
- Assign a degree $q(x_+) = 1$, $q(x_-) = 0$;

イロト 不得 とくほとくほとう

- V has two generators x₊ and x₋;
- Assign a degree $q(x_+) = 1$, $q(x_-) = 0$;
- Define $CKh^{i}(D) = \bigoplus V^{\otimes |D_{v}|}$, where we sum over $v \in \{0, 1\}^{n}$ with |v| = i;

イロト イポト イヨト イヨト

- V has two generators x₊ and x₋;
- Assign a degree $q(x_+) = 1$, $q(x_-) = 0$;
- Define $\mathsf{CKh}^i(D) = \bigoplus V^{\otimes |D_v|}$, where we sum over $v \in \{0, 1\}^n$ with |v| = i;
- We have grading obtained from *q*.

イロト イポト イヨト イヨト

• Need to define ∂ on $V^{\otimes |D_v|}$;

イロン 不得 とくほう 不良 とう

3

- Need to define ∂ on $V^{\otimes |D_v|}$;
- Suppose w is such that v_i = w_i except at j and v_j = 0, w_j = 1;

イロト 不得 とくほ とくほとう

3

- Need to define ∂ on $V^{\otimes |D_v|}$;
- Suppose w is such that v_i = w_i except at j and v_j = 0, w_j = 1;
- w is an immediate successor of v;

イロト 不得 とくほ とくほとう

- Need to define ∂ on $V^{\otimes |D_v|}$;
- Suppose w is such that v_i = w_i except at j and v_j = 0, w_j = 1;
- w is an immediate successor of v;
- v-w is an edge in the cube $[0, 1]^n$;

イロト 不同 とくほ とくほ とう

- Need to define ∂ on $V^{\otimes |D_v|}$;
- Suppose w is such that v_i = w_i except at j and v_j = 0, w_j = 1;
- w is an immediate successor of v;
- v-w is an edge in the cube $[0, 1]^n$;
- In that case D_v differs from D_w at one resolution:

- Need to define ∂ on $V^{\otimes |D_v|}$;
- Suppose w is such that v_i = w_i except at j and v_j = 0, w_j = 1;
- w is an immediate successor of v;
- v-w is an edge in the cube $[0, 1]^n$;
- In that case D_v differs from D_w at one resolution:
- Either two circles in D_v are merged into one;

▲帰▶ ▲臣▶ ▲臣▶

- Need to define ∂ on $V^{\otimes |D_v|}$;
- Suppose w is such that v_i = w_i except at j and v_j = 0, w_j = 1;
- w is an immediate successor of v;
- v-w is an edge in the cube $[0, 1]^n$;
- In that case D_v differs from D_w at one resolution:
- Either two circles in D_v are merged into one;
- Or one circle is split.

・ 同 ト ・ ヨ ト ・ ヨ ト …

• We define a merge map $V \otimes V \rightarrow V$;

Maciej Borodzik Khovanov homotopy type for periodic links

(日) (同) (日) (日)

- We define a merge map $V \otimes V \rightarrow V$;
- and a split map $V \rightarrow V \otimes V$.

3

- We define a merge map $V \otimes V \to V$;
- and a split map $V \to V \otimes V$.
- The merge map is $x_- \otimes x_- \mapsto x_-$, $x_+ \otimes x_-$, $x_- \otimes x_+ \mapsto x_+$, $x_+ \otimes x_+ \mapsto 0$;

- We define a merge map $V \otimes V \to V$;
- and a split map $V \to V \otimes V$.
- The merge map is $x_- \otimes x_- \mapsto x_-$, $x_+ \otimes x_-$, $x_- \otimes x_+ \mapsto x_+$, $x_+ \otimes x_+ \mapsto 0$;
- The split map is $x_- \mapsto x_- \otimes x_-$, $x_+ \mapsto x_- \otimes x_+ + x_+ \otimes x_-$.

- We define a merge map $V \otimes V \to V$;
- and a split map $V \rightarrow V \otimes V$.
- The merge map is $x_- \otimes x_- \mapsto x_-$, $x_+ \otimes x_-$, $x_- \otimes x_+ \mapsto x_+$, $x_+ \otimes x_+ \mapsto 0$;
- The split map is $x_- \mapsto x_- \otimes x_-$, $x_+ \mapsto x_- \otimes x_+ + x_+ \otimes x_-$.
- Both maps preserve the grading.

- We define a merge map $V \otimes V \to V$;
- and a split map $V \to V \otimes V$.
- The merge map is $x_- \otimes x_- \mapsto x_-$, $x_+ \otimes x_-$, $x_- \otimes x_+ \mapsto x_+$, $x_+ \otimes x_+ \mapsto 0$;
- The split map is $x_- \mapsto x_- \otimes x_-$, $x_+ \mapsto x_- \otimes x_+ + x_+ \otimes x_-$.
- Both maps preserve the grading.
- The differential is defined with these maps (up to sign).

イロト 不得 とくほと くほとう

• $Kh^{i,q}(L)$ is an invariant of link;

イロト 不同 トイヨト イヨト

æ

- Kh^{*i*,*q*}(*L*) is an invariant of link;
- Generalizes (categorifies) Jones polynomial: $\sum_{q,i} (-1)^i t^q \operatorname{rk} \operatorname{Kh}^{i,q} = J(L).$

ヘロン 人間 とくほ とくほう

- Kh^{*i*,*q*}(*L*) is an invariant of link;
- Generalizes (categorifies) Jones polynomial: $\sum_{q,i} (-1)^i t^q \operatorname{rk} \operatorname{Kh}^{i,q} = J(L).$
- Detects the unknot (Kronheimer, Mrowka 2007);

イロト イポト イヨト イヨト

- Kh^{*i*,*q*}(*L*) is an invariant of link;
- Generalizes (categorifies) Jones polynomial: $\sum_{q,i} (-1)^i t^q \operatorname{rk} \operatorname{Kh}^{i,q} = J(L).$
- Detects the unknot (Kronheimer, Mrowka 2007);
- Allows to compute the smooth four-genus of torus knots (Rasmussen, 2003) via *s*-invariants.

イロト イポト イヨト イヨト

• Space \mathcal{X}_{L}^{q} whose homology is $\mathsf{Kh}^{i,q}$.

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

- Space \mathcal{X}_{L}^{q} whose homology is $Kh^{i,q}$.
- Apply Steenrod squares to Kh^{*i*,*q*} (Lipshitz–Sarkar 2012);

・ 同 ト ・ ヨ ト ・ ヨ ト

- Space \mathcal{X}_{L}^{q} whose homology is $\mathsf{Kh}^{i,q}$.
- Apply Steenrod squares to Kh^{*i*,*q*} (Lipshitz–Sarkar 2012);
- Refine s-invariants (Lipshitz-Sarkar 2013);

(個) (日) (日)

- Space \mathcal{X}_{L}^{q} whose homology is $\mathsf{Kh}^{i,q}$.
- Apply Steenrod squares to Kh^{*i*,*q*} (Lipshitz–Sarkar 2012);
- Refine *s*-invariants (Lipshitz–Sarkar 2013);
- Allows to understand better Kh;

・過 と く ヨ と く ヨ と

- Space \mathcal{X}_{L}^{q} whose homology is $Kh^{i,q}$.
- Apply Steenrod squares to Kh^{*i*,*q*} (Lipshitz–Sarkar 2012);
- Refine *s*-invariants (Lipshitz–Sarkar 2013);
- Allows to understand better Kh;
- Fits into a general picture.

- Space \mathcal{X}_{L}^{q} whose homology is $Kh^{i,q}$.
- Apply Steenrod squares to Kh^{*i*,*q*} (Lipshitz–Sarkar 2012);
- Refine *s*-invariants (Lipshitz–Sarkar 2013);
- Allows to understand better Kh;
- Fits into a general picture.
- How can it be constructed?

Our aim is to define Khovanov homotopy type. One space \mathcal{X}_{L}^{q} for each grading.

イロト 不得 トイヨト イヨト
• Analogy: Morse chain complex.

ヘロト 人間 トイヨト イヨト

ъ

- Analogy: Morse chain complex.
- Does the Morse chain complex define a space?

イロト 不得 トイヨト イヨト

- Analogy: Morse chain complex.
- Does the Morse chain complex define a space?
- No! CP² ⊔ CP² and S⁴ ⊔ S² × S² admit Morse functions with 2 minima, 2 maxima and 2 critical points of index 2. The Morse complex is trivial for dimensional reasons.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Analogy: Morse chain complex.
- Does the Morse chain complex define a space?
- No! CP² ⊔ CP² and S⁴ ⊔ S² × S² admit Morse functions with 2 minima, 2 maxima and 2 critical points of index 2. The Morse complex is trivial for dimensional reasons.
- Need to incorporate moduli spaces of trajectories.

・ 同 ト ・ ヨ ト ・ ヨ ト

Morse theory

• Let $f: M \to \mathbb{R}$ be a Morse-Smale function on a Riemannian manifold.

イロト 不得 とくほと くほとう

3

Morse theory

- Let $f: M \to \mathbb{R}$ be a Morse-Smale function on a Riemannian manifold.
- For each pair of critical points x, y we define M(x, y) to be the space of trajectories from x to y.

イロト イポト イヨト イヨト

ъ

- Let $f: M \to \mathbb{R}$ be a Morse-Smale function on a Riemannian manifold.
- For each pair of critical points x, y we define M(x, y) to be the space of trajectories from x to y.
- Formally $\mathcal{M}(x, y)$ is the intersection of corresponding stable and unstable trajectories.

イロト イポト イヨト イヨト

- Let *f*: *M* → ℝ be a Morse-Smale function on a Riemannian manifold.
- For each pair of critical points x, y we define M(x, y) to be the space of trajectories from x to y.
- Formally $\mathcal{M}(x, y)$ is the intersection of corresponding stable and unstable trajectories.
- $\mathcal{M}(x, y)$ is a manifold-with-corners of dimension ind y - ind x - 1.

イロト 不同 とくほ とくほ とう

- Let *f*: *M* → ℝ be a Morse-Smale function on a Riemannian manifold.
- For each pair of critical points x, y we define M(x, y) to be the space of trajectories from x to y.
- Formally $\mathcal{M}(x, y)$ is the intersection of corresponding stable and unstable trajectories.
- $\mathcal{M}(x, y)$ is a manifold-with-corners of dimension ind y - ind x - 1.
- if ind x < ind z < ind y the product $\mathcal{M}(x, z) \times \mathcal{M}(z, y)$ embeds to the boundary of $\mathcal{M}(x, y)$.

イロト 不得 とくほ とくほ とう

- Let *f*: *M* → ℝ be a Morse-Smale function on a Riemannian manifold.
- For each pair of critical points x, y we define M(x, y) to be the space of trajectories from x to y.
- Formally $\mathcal{M}(x, y)$ is the intersection of corresponding stable and unstable trajectories.
- $\mathcal{M}(x, y)$ is a manifold-with-corners of dimension ind y - ind x - 1.
- if ind x < ind z < ind y the product $\mathcal{M}(x, z) \times \mathcal{M}(z, y)$ embeds to the boundary of $\mathcal{M}(x, y)$.

Most important example

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

- Let *f*: *M* → ℝ be a Morse-Smale function on a Riemannian manifold.
- For each pair of critical points x, y we define M(x, y) to be the space of trajectories from x to y.
- Formally $\mathcal{M}(x, y)$ is the intersection of corresponding stable and unstable trajectories.
- $\mathcal{M}(x, y)$ is a manifold-with-corners of dimension ind y - ind x - 1.
- if ind x < ind z < ind y the product $\mathcal{M}(x, z) \times \mathcal{M}(z, y)$ embeds to the boundary of $\mathcal{M}(x, y)$.

Most important example

Example

Set
$$M = [0, 1]^n$$
 and $f(x_1, ..., x_n) = \sum f(x_i)$, where $f(x) = -x^3 + 3x^2$.

We say that C is a *flow category* if

イロト 不同 トイヨト イヨト

æ

We say that C is a *flow category* if

• Ob C form a finite set;

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

æ

We say that C is a *flow category* if

- Ob C form a finite set;
- there is a grading function $gr: \operatorname{Ob} \mathcal{C} \to \mathbb{Z};$

イロト イポト イヨト イヨト

ъ

We say that C is a flow category if

- Ob C form a finite set;
- there is a grading function $gr: \operatorname{Ob} \mathcal{C} \to \mathbb{Z};$
- if $x, y \in Ob C$ and $y \neq x$, then $\mathcal{M}(x, y)$ is a compact gr(y) gr(x) 1-dimensional manifold with corners, $\mathcal{M}(x, x) = \{pt\};$

イロト イポト イヨト イヨト

We say that C is a flow category if

- Ob C form a finite set;
- there is a grading function $gr: \operatorname{Ob} \mathcal{C} \to \mathbb{Z};$
- if $x, y \in Ob C$ and $y \neq x$, then $\mathcal{M}(x, y)$ is a compact gr(y) gr(x) 1-dimensional manifold with corners, $\mathcal{M}(x, x) = \{pt\};$
- if x, y, z ∈ Ob C and gr(x) < gr(z) < gr(y), there is a composition map M(x, z) × M(z, y) → ∂M(x, y), the boundary of M(x, y) is all covered by such products;

イロト イポト イヨト イヨト

We say that C is a flow category if

- Ob C form a finite set;
- there is a grading function $gr: \operatorname{Ob} \mathcal{C} \to \mathbb{Z};$
- if $x, y \in Ob C$ and $y \neq x$, then $\mathcal{M}(x, y)$ is a compact gr(y) gr(x) 1-dimensional manifold with corners, $\mathcal{M}(x, x) = \{pt\};$
- if x, y, z ∈ Ob C and gr(x) < gr(z) < gr(y), there is a composition map M(x, z) × M(z, y) → ∂M(x, y), the boundary of M(x, y) is all covered by such products;
- there are various compatibility relations of the composition map.

イロト イポト イヨト イヨト

æ

The cube flow category is the flow category associated with the Morse function $f: [0, 1]^n \to \mathbb{R}$ defined by $\sum (3x_i^2 - x_i^3)$.

Maciej Borodzik Khovanov homotopy type for periodic links

イロト 不得 トイヨト イヨト

The cube flow category is the flow category associated with the Morse function $f: [0, 1]^n \to \mathbb{R}$ defined by $\sum (3x_i^2 - x_i^3)$.

• Each of the moduli spaces is topologically a disk;

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

The cube flow category is the flow category associated with the Morse function $f: [0, 1]^n \to \mathbb{R}$ defined by $\sum (3x_i^2 - x_i^3)$.

- Each of the moduli spaces is topologically a disk;
- There is a nice description of the flow category using permutohedra.

イロト 不得 トイヨト イヨト

The cube flow category is the flow category associated with the Morse function $f: [0, 1]^n \to \mathbb{R}$ defined by $\sum (3x_i^2 - x_i^3)$.

- Each of the moduli spaces is topologically a disk;
- There is a nice description of the flow category using permutohedra.

Does any Morse flow category determine the underlying manifold?

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Consider two copies of $D^2 \times S^1$. Glue along boundary.

Maciej Borodzik Khovanov homotopy type for periodic links

ヘロン 人間 とくほ とくほ とう

ъ

Consider two copies of $D^2 \times S^1$. Glue along boundary. Depending on the gluing, we can obtain *any* lens space.

イロト イポト イヨト イヨト

ъ

Consider two copies of $D^2 \times S^1$. Glue along boundary. Depending on the gluing, we can obtain *any* lens space.

Some extra information is needed to impose uniqueness.

< 回 > < 回 > < 回 >

Consider two copies of $D^2 \times S^1$. Glue along boundary. Depending on the gluing, we can obtain *any* lens space.

Some extra information is needed to impose uniqueness.

 First construction of Lipshitz and Sarkar: embedding of M into ℝ^d in a consistent way;

・ 同 ト ・ ヨ ト ・ ヨ ト

Consider two copies of $D^2 \times S^1$. Glue along boundary. Depending on the gluing, we can obtain *any* lens space.

Some extra information is needed to impose uniqueness.

- First construction of Lipshitz and Sarkar: embedding of M into ℝ^d in a consistent way;
- Then perform Cohen-Jones-Segal construction.

Consider two copies of $D^2 \times S^1$. Glue along boundary. Depending on the gluing, we can obtain *any* lens space.

Some extra information is needed to impose uniqueness.

- First construction of Lipshitz and Sarkar: embedding of M into ℝ^d in a consistent way;
- Then perform Cohen-Jones-Segal construction.
- Different, more specific: define an appropriate functor from C to a cube category (cover) and use the embedding of Cube(n).

イロト イポト イヨト イヨト

For $v \in \{0, 1\}^n$ define $(D(v), \mathbf{x})$ to be a pair, where D(v) is a resolution and \mathbf{x} assigns to each of the circles in D(v) either x_+ or x_- .

ъ

・ 同 ト ・ ヨ ト ・ ヨ ト

For $v \in \{0, 1\}^n$ define $(D(v), \mathbf{x})$ to be a pair, where D(v) is a resolution and \mathbf{x} assigns to each of the circles in D(v) either x_+ or x_- .

• For $x = (D(v), \mathbf{x})$ we set $f(x) = v \in \text{Cube}(n)$.

イロト イポト イヨト イヨト

For $v \in \{0, 1\}^n$ define $(D(v), \mathbf{x})$ to be a pair, where D(v) is a resolution and \mathbf{x} assigns to each of the circles in D(v) either x_+ or x_- .

- For $x = (D(v), \mathbf{x})$ we set $f(x) = v \in \text{Cube}(n)$.
- gr(x) = |f(x)|.

イロト イポト イヨト イヨト

æ

For $v \in \{0, 1\}^n$ define $(D(v), \mathbf{x})$ to be a pair, where D(v) is a resolution and \mathbf{x} assigns to each of the circles in D(v) either x_+ or x_- .

- For $x = (D(v), \mathbf{x})$ we set $f(x) = v \in \text{Cube}(n)$.
- $gr(x) = |\mathfrak{f}(x)|$.
- Think of $(D(v), \mathbf{x})$ as generators of CKh.

イロト イポト イヨト イヨト

For $v \in \{0, 1\}^n$ define $(D(v), \mathbf{x})$ to be a pair, where D(v) is a resolution and \mathbf{x} assigns to each of the circles in D(v) either x_+ or x_- .

- For $x = (D(v), \mathbf{x})$ we set $f(x) = v \in \text{Cube}(n)$.
- $gr(x) = |\mathfrak{f}(x)|$.
- Think of $(D(v), \mathbf{x})$ as generators of CKh.
- We define a partial order x ≺ y if y can be obtained from x as a 'partial differential'.

イロト 不得 トイヨト イヨト

For $v \in \{0, 1\}^n$ define $(D(v), \mathbf{x})$ to be a pair, where D(v) is a resolution and \mathbf{x} assigns to each of the circles in D(v) either x_+ or x_- .

- For $x = (D(v), \mathbf{x})$ we set $f(x) = v \in \text{Cube}(n)$.
- $gr(x) = |\mathfrak{f}(x)|$.
- Think of $(D(v), \mathbf{x})$ as generators of CKh.
- We define a partial order x ≺ y if y can be obtained from x as a 'partial differential'.
- Our aim is to define $\mathcal{M}(x, y)$ for all x, y such that $x \prec y$.

ヘロト 人間 トイヨト イヨト

• Objects are $(D(v), \mathbf{x})$;

ヘロト 人間 とくほ とくほ とう

æ

- Objects are (D(v), x);
- Morphisms are $\mathcal{M}(x, y)$. Constructed inductively.

イロト イポト イヨト イヨト

ъ

- Objects are (D(v), x);
- Morphisms are $\mathcal{M}(x, y)$. Constructed inductively.
- First if x = y, then as gr(y) gr(x) grows.

ヘロト 人間 トイヨト イヨト

æ
- Objects are (D(v), x);
- Morphisms are $\mathcal{M}(x, y)$. Constructed inductively.
- First if x = y, then as gr(y) gr(x) grows.
- The key property is that we want to have a map $f: \mathcal{M}(x, y)) \to \mathcal{M}_{Cube(n)}(f(x), f(y))$, which is a trivial cover.

(日本) (日本) (日本)

- Objects are (D(v), x);
- Morphisms are $\mathcal{M}(x, y)$. Constructed inductively.
- First if x = y, then as gr(y) gr(x) grows.
- The key property is that we want to have a map $f: \mathcal{M}(x, y)) \to \mathcal{M}_{Cube(n)}(f(x), f(y))$, which is a trivial cover.
- After checking some compatibility relations, f becomes a functor from the Khovanov flow category to Cube(n).

イロト 不得 トイヨト イヨト

- Objects are (D(v), x);
- Morphisms are $\mathcal{M}(x, y)$. Constructed inductively.
- First if x = y, then as gr(y) gr(x) grows.
- The key property is that we want to have a map $f: \mathcal{M}(x, y)) \to \mathcal{M}_{Cube(n)}(f(x), f(y))$, which is a trivial cover.
- After checking some compatibility relations, f becomes a functor from the Khovanov flow category to Cube(n).
- Based on this functor one can define a framing and perform a construction of X_D.

イロト イポト イヨト イヨト

Definition

A knot $K \subset S^3$ is *p*-periodic if it admits a rotational symmetry with the symmetry axis disjoint from *K*.

イロト イポト イヨト イヨト

Definition

A knot $K \subset S^3$ is *p*-periodic if it admits a rotational symmetry with the symmetry axis disjoint from *K*.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

For a periodic diagram *D*, the group Z_p permutes the cube of resolution.

イロト イポト イヨト イヨト

- For a periodic diagram *D*, the group Z_p permutes the cube of resolution.
- Take a ring *R*. Then CKh(*D*; *R*) has a structure of Λ = *R*[ℤ_p]–module.

イロト 不同 とくほ とくほ とう

æ

- For a periodic diagram *D*, the group Z_p permutes the cube of resolution.
- Take a ring *R*. Then CKh(*D*; *R*) has a structure of Λ = *R*[ℤ_p]–module.

Definition (Politarczyk)

For any Λ -module *M* define the equivariant Khovanov homology as

 $\mathsf{EKh}(K; M) = \mathsf{Ext}_{\Lambda}(M, \mathsf{CKh}(D; R)).$

イロト イポト イヨト イヨト

- For a periodic diagram *D*, the group Z_p permutes the cube of resolution.
- Take a ring *R*. Then CKh(*D*; *R*) has a structure of Λ = *R*[ℤ_p]–module.

Definition (Politarczyk)

For any Λ -module *M* define the equivariant Khovanov homology as

```
\mathsf{EKh}(K; M) = \mathsf{Ext}_{\Lambda}(M, \mathsf{CKh}(D; R)).
```

• Does not depend on the choice of the diagram.

イロト イポト イヨト イヨト

- For a periodic diagram *D*, the group Z_p permutes the cube of resolution.
- Take a ring *R*. Then CKh(*D*; *R*) has a structure of Λ = *R*[ℤ_p]–module.

Definition (Politarczyk)

For any Λ -module *M* define the equivariant Khovanov homology as

```
\mathsf{EKh}(K; M) = \mathsf{Ext}_{\Lambda}(M, \mathsf{CKh}(D; R)).
```

- Does not depend on the choice of the diagram.
- Most important example: $M = \Lambda$.

ヘロン 人間 とくほ とくほう

 We can define EKh_d(L) = EKh(L; ℤ[ξ_d]) for any d|p. This is the third gradation, coming from representations of ℤ_p.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

- We can define EKh_d(L) = EKh(L; ℤ[ξ_d]) for any d|p. This is the third gradation, coming from representations of ℤ_p.
- If R = Z_m and p is invertible in R, then Extⁱ_Λ = 0 for i > 0 and EKh(L; Λ) = Kh(L; R).

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

- We can define EKh_d(L) = EKh(L; ℤ[ξ_d]) for any d|p. This is the third gradation, coming from representations of ℤ_p.
- If R = Z_m and p is invertible in R, then Extⁱ_Λ = 0 for i > 0 and EKh(L; Λ) = Kh(L; R).
- On the other hand we have a Schur decomposition of Hom_Λ(Λ; CKh(D)).

イロト イポト イヨト イヨト

Equivariant flow category

Recall the definition:

Definition

We say that C is a flow category if

- Ob C form a finite set;
- there is a grading function $gr: Ob C \to \mathbb{Z};$
- if $x, y \in Ob C$ and $y \neq x$, then $\mathcal{M}(x, y)$ is a compact gr(y) gr(x) 1-dimensional manifold with corners, $\mathcal{M}(x, x) = \{pt\};$
- if x, y, z ∈ Ob C and gr(x) < gr(z) < gr(y), there is a composition map M(x, z) × M(z, y) → ∂M(x, y), the boundary of M(x, y) is all covered by such products;
- there are various compatibility relations of the composition map.

イロト イポト イヨト イヨト

Equivariant flow category

Recall the definition:

Definition

We say that \mathcal{C} is a *flow category* if

- Ob C form a finite set;
- there is a grading function $gr: Ob C \to \mathbb{Z};$
- if $x, y \in Ob C$ and $y \neq x$, then $\mathcal{M}(x, y)$ is a compact gr(y) gr(x) 1-dimensional manifold with corners, $\mathcal{M}(x, x) = \{pt\};$
- if x, y, z ∈ Ob C and gr(x) < gr(z) < gr(y), there is a composition map M(x, z) × M(z, y) → ∂M(x, y), the boundary of M(x, y) is all covered by such products;
- there are various compatibility relations of the composition map.

The key idea: replace the grading function to $gr: \operatorname{Ob} \mathcal{C} \to RO(G).$

RO(*G*) is the Grothendieck ring of real orthogonal representations of *G*

イロト イポト イヨト イヨト

- *RO*(*G*) is the Grothendieck ring of real orthogonal representations of *G*
- the axiom that $\mathcal{M}(x, y)$ be a manifold of dimension gr(y) gr(x) should be changed

イロト イポト イヨト イヨト

1

- *RO*(*G*) is the Grothendieck ring of real orthogonal representations of *G*
- the axiom that $\mathcal{M}(x, y)$ be a manifold of dimension gr(y) gr(x) should be changed
- it is replaced by requirement that it is a *G*-manifold of dimension gr(y)|_{G_{x,y}} gr(x)|_{G(x,y)}, where G_{x,y} = G_x ∩ G_y is the intersection of isotropy groups.

イロト 不得 とくほ とくほ とう

- *RO*(*G*) is the Grothendieck ring of real orthogonal representations of *G*
- the axiom that $\mathcal{M}(x, y)$ be a manifold of dimension gr(y) gr(x) should be changed
- it is replaced by requirement that it is a *G*-manifold of dimension gr(y)|_{G_{x,y}} gr(x)|_{G(x,y)}, where G_{x,y} = G_x ∩ G_y is the intersection of isotropy groups.
- Saying that a *G*-manifold has dimension V W if $T_z M \oplus W|_{G_z} = V|_{G_z}$ for any $z \in M$.

イロト 不得 とくほ とくほ とう

- *RO*(*G*) is the Grothendieck ring of real orthogonal representations of *G*
- the axiom that $\mathcal{M}(x, y)$ be a manifold of dimension gr(y) gr(x) should be changed
- it is replaced by requirement that it is a *G*-manifold of dimension gr(y)|_{G_{x,y}} gr(x)|_{G(x,y)}, where G_{x,y} = G_x ∩ G_y is the intersection of isotropy groups.
- Saying that a *G*-manifold has dimension V W if $T_z M \oplus W|_{G_z} = V|_{G_z}$ for any $z \in M$.
- In our setting we define consistently the equivariant grading.

イロト 不得 とくき とくきとうき

- *RO*(*G*) is the Grothendieck ring of real orthogonal representations of *G*
- the axiom that $\mathcal{M}(x, y)$ be a manifold of dimension gr(y) gr(x) should be changed
- it is replaced by requirement that it is a *G*-manifold of dimension gr(y)|_{G_{x,y}} gr(x)|_{G(x,y)}, where G_{x,y} = G_x ∩ G_y is the intersection of isotropy groups.
- Saying that a *G*-manifold has dimension V W if $T_z M \oplus W|_{G_z} = V|_{G_z}$ for any $z \in M$.
- In our setting we define consistently the equivariant grading.
- The functor f commutes with the group action.

イロト 不得 とくき とくきとうき

Everything works.

イロト 不得 とくき とくきとう

æ

If *L* is an *m*-periodic link, then spaces \mathcal{X}_{L}^{q} are well-defined up to stable equivariant homotopy equivalence.

イロト イポト イヨト イヨト

If *L* is an *m*-periodic link, then spaces \mathcal{X}_{L}^{q} are well-defined up to stable equivariant homotopy equivalence.

• The proof is much more involved;

イロト 不得 トイヨト イヨト

If *L* is an *m*-periodic link, then spaces \mathcal{X}_{L}^{q} are well-defined up to stable equivariant homotopy equivalence.

- The proof is much more involved;
- Invariance under Reidemeister moves uses the fact that the cube category Cube admits a group action and for any *H* ⊂ ℤ_m the fixed point category Cube^{*H*} is again the cube category.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Let *L* be an *m*-periodic link and suppose \mathbb{F} is a field. For any *R*-torsion-free $R[\mathbb{Z}_m]$ -module *M* we have an isomorphism of $R[\mathbb{Z}_m]$ -modules:

$$\mathsf{EKh}^{i,q}(L;M) \cong \widetilde{H}^*_G i(\mathcal{X}^q_L, \mathsf{Hom}_R(M,R)).$$

イロト イポト イヨト イヨト

Steenrod squares commute with group actions;

・ロン ・ 一 レ ・ 日 と ・ 日 と

- Steenrod squares commute with group actions;
- Refinement of Borodzik–Politarczyk periodicity criterion;

イロト イポト イヨト イヨト

- Steenrod squares commute with group actions;
- Refinement of Borodzik–Politarczyk periodicity criterion;
- Potential insight into Khovanov homology of periodic links, like torus links.

(4回) (1日) (日)

If you didn't like the talk you can look at the paper *Twisted Blanchfield pairings, twisted signatures and Casson–Gordon invariants, —*, A. Conway, W. Politarczyk

個 と く ヨ と く ヨ と

If you didn't like the talk you can look at the paper *Twisted Blanchfield pairings, twisted signatures and Casson–Gordon invariants,* —, A. Conway, W. Politarczyk Which deals with something entirely different.

(同) くほり くほう