Khovanov homotopy type for periodic links

Maciej Borodzik
www.mimuw.edu.pl/~mcboro joint with Wojciech Politarczyk and Marithania Silvero
Institute of Mathematics, University of Warsaw

Warsaw, 2018

Khovanov homology

- Consider a link diagram D with n-crossings. Label these crossings;

Khovanov homology

- Consider a link diagram D with n-crossings. Label these crossings;
- Take an element $v=\left(v_{1}, \ldots, v_{n}\right) \in\{0,1\}^{n}$;

Khovanov homology

- Consider a link diagram D with n-crossings. Label these crossings;
- Take an element $v=\left(v_{1}, \ldots, v_{n}\right) \in\{0,1\}^{n}$;
- D_{V} is a resolution depending on the crossing;

Khovanov homology

- Consider a link diagram D with n-crossings. Label these crossings;
- Take an element $v=\left(v_{1}, \ldots, v_{n}\right) \in\{0,1\}^{n}$;
- D_{V} is a resolution depending on the crossing;

Khovanov homology

- Consider a link diagram D with n-crossings. Label these crossings;
- Take an element $v=\left(v_{1}, \ldots, v_{n}\right) \in\{0,1\}^{n}$;
- D_{V} is a resolution depending on the crossing;
- Each of the D_{v} is a disjoint union of $\left|D_{v}\right|$ circles.

1-resolution

Khovanov homology

- Consider a link diagram D with n-crossings. Label these crossings;
- Take an element $v=\left(v_{1}, \ldots, v_{n}\right) \in\{0,1\}^{n}$;
- D_{V} is a resolution depending on the crossing;
- Each of the D_{V} is a disjoint union of $\left|D_{V}\right|$ circles.
- Khovanov chain complex is from $V \otimes\left|D_{v}\right|$ for $\operatorname{dim} V=2$.

0-resolution

1-resolution

Khovanov homology

- Consider a link diagram D with n-crossings. Label these crossings;
- Take an element $v=\left(v_{1}, \ldots, v_{n}\right) \in\{0,1\}^{n}$;
- D_{V} is a resolution depending on the crossing;
- Each of the D_{V} is a disjoint union of $\left|D_{V}\right|$ circles.
- Khovanov chain complex is from $V \otimes\left|D_{v}\right|$ for $\operatorname{dim} V=2$.
- The differentials are elementary cobordisms.

0-resolution
1-resolution

Khovanov homology. Algebra.

- V has two generators x_{+}and x_{-};

Khovanov homology. Algebra.

- V has two generators x_{+}and x_{-};
- Assign a degree $q\left(x_{+}\right)=1, q\left(x_{-}\right)=0$;

Khovanov homology. Algebra.

- V has two generators x_{+}and x_{-};
- Assign a degree $q\left(x_{+}\right)=1, q\left(x_{-}\right)=0$;
- Define $\operatorname{CKh}^{i}(D)=\oplus V^{\otimes\left|D_{v}\right|}$, where we sum over $v \in\{0,1\}^{n}$ with $|v|=i$;

Khovanov homology. Algebra.

- V has two generators x_{+}and x_{-};
- Assign a degree $q\left(x_{+}\right)=1, q\left(x_{-}\right)=0$;
- Define $\operatorname{CKh}^{i}(D)=\oplus V^{\otimes\left|D_{v}\right|}$, where we sum over $v \in\{0,1\}^{n}$ with $|v|=i$;
- We have grading obtained from q.

Khovanov homology. The differential.

- Need to define ∂ on $V^{\otimes\left|D_{v}\right|}$;

Khovanov homology. The differential.

- Need to define ∂ on $V^{\otimes\left|D_{v}\right|}$;
- Suppose w is such that $v_{i}=w_{i}$ except at j and $v_{j}=0$, $w_{j}=1$;

Khovanov homology. The differential.

- Need to define ∂ on $V^{\otimes\left|D_{v}\right|}$;
- Suppose w is such that $v_{i}=w_{i}$ except at j and $v_{j}=0$, $w_{j}=1$;
- w is an immediate successor of v;

Khovanov homology. The differential.

- Need to define ∂ on $V^{\otimes\left|D_{v}\right|}$;
- Suppose w is such that $v_{i}=w_{i}$ except at j and $v_{j}=0$, $w_{j}=1$;
- w is an immediate successor of v;
- $v-w$ is an edge in the cube $[0,1]^{n}$;

Khovanov homology. The differential.

- Need to define ∂ on $V^{\otimes\left|D_{v}\right|}$;
- Suppose w is such that $v_{i}=w_{i}$ except at j and $v_{j}=0$, $w_{j}=1$;
- w is an immediate successor of v;
- $v-w$ is an edge in the cube $[0,1]^{n}$;
- In that case D_{V} differs from D_{w} at one resolution:

Khovanov homology. The differential.

- Need to define ∂ on $V^{\otimes\left|D_{v}\right|}$;
- Suppose w is such that $v_{i}=w_{i}$ except at j and $v_{j}=0$, $w_{j}=1$;
- w is an immediate successor of v;
- $v-w$ is an edge in the cube $[0,1]^{n}$;
- In that case D_{v} differs from D_{w} at one resolution:
- Either two circles in D_{v} are merged into one;

Khovanov homology. The differential.

- Need to define ∂ on $V^{\otimes\left|D_{v}\right|}$;
- Suppose w is such that $v_{i}=w_{i}$ except at j and $v_{j}=0$, $w_{j}=1$;
- w is an immediate successor of v;
- $v-w$ is an edge in the cube $[0,1]^{n}$;
- In that case D_{V} differs from D_{w} at one resolution:
- Either two circles in D_{v} are merged into one;
- Or one circle is split.

Khovanov homology. Maps

- We define a merge map $V \otimes V \rightarrow V$;

Khovanov homology. Maps

- We define a merge map $V \otimes V \rightarrow V$;
- and a split map $V \rightarrow V \otimes V$.

Khovanov homology. Maps

- We define a merge map $V \otimes V \rightarrow V$;
- and a split map $V \rightarrow V \otimes V$.
- The merge map is $x_{-} \otimes x_{-} \mapsto x_{-}, x_{+} \otimes x_{-}, x_{-} \otimes x_{+} \mapsto x_{+}$, $x_{+} \otimes x_{+} \mapsto 0$;

Khovanov homology. Maps

- We define a merge map $V \otimes V \rightarrow V$;
- and a split map $V \rightarrow V \otimes V$.
- The merge map is $x_{-} \otimes x_{-} \mapsto x_{-}, x_{+} \otimes x_{-}, x_{-} \otimes x_{+} \mapsto x_{+}$, $x_{+} \otimes x_{+} \mapsto 0$;
- The split map is $x_{-} \mapsto x_{-} \otimes x_{-}, x_{+} \mapsto x_{-} \otimes x_{+}+x_{+} \otimes x_{-}$.

Khovanov homology. Maps

- We define a merge map $V \otimes V \rightarrow V$;
- and a split map $V \rightarrow V \otimes V$.
- The merge map is $x_{-} \otimes x_{-} \mapsto x_{-}, x_{+} \otimes x_{-}, x_{-} \otimes x_{+} \mapsto x_{+}$, $x_{+} \otimes x_{+} \mapsto 0$;
- The split map is $x_{-} \mapsto x_{-} \otimes x_{-}, x_{+} \mapsto x_{-} \otimes x_{+}+x_{+} \otimes x_{-}$.
- Both maps preserve the grading.

Khovanov homology. Maps

- We define a merge map $V \otimes V \rightarrow V$;
- and a split map $V \rightarrow V \otimes V$.
- The merge map is $x_{-} \otimes x_{-} \mapsto x_{-}, x_{+} \otimes x_{-}, x_{-} \otimes x_{+} \mapsto x_{+}$, $x_{+} \otimes x_{+} \mapsto 0$;
- The split map is $x_{-} \mapsto x_{-} \otimes x_{-}, x_{+} \mapsto x_{-} \otimes x_{+}+x_{+} \otimes x_{-}$.
- Both maps preserve the grading.
- The differential is defined with these maps (up to sign).

Features

- $\mathrm{Kh}^{i, q}(L)$ is an invariant of link;

Features

- $\mathrm{Kh}^{i, q}(L)$ is an invariant of link;
- Generalizes (categorifies) Jones polynomial: $\sum_{q, i}(-1)^{i} t^{q} \mathrm{rk} \mathrm{Kh}^{i, q}=J(L)$.
- $\mathrm{Kh}^{i, q}(\mathrm{~L})$ is an invariant of link;
- Generalizes (categorifies) Jones polynomial:
$\sum_{q, i}(-1)^{i} t^{q} \mathrm{rk} \mathrm{Kh}^{i, q}=J(L)$.
- Detects the unknot (Kronheimer, Mrowka 2007);
- $\mathrm{Kh}^{i, q}(L)$ is an invariant of link;
- Generalizes (categorifies) Jones polynomial:
$\sum_{q, i}(-1)^{i} t^{q} \mathrm{rkKh}^{i, q}=J(L)$.
- Detects the unknot (Kronheimer, Mrowka 2007);
- Allows to compute the smooth four-genus of torus knots (Rasmussen, 2003) via s-invariants.

Khovanov homotopy type

- Space \mathcal{X}_{L}^{q} whose homology is $\mathrm{Kh}^{i, q}$.

Khovanov homotopy type

- Space \mathcal{X}_{L}^{q} whose homology is $K^{i, q}$.
- Apply Steenrod squares to $\mathrm{Kh}^{i, q}$ (Lipshitz-Sarkar 2012);

Khovanov homotopy type

- Space \mathcal{X}_{L}^{q} whose homology is $K^{i, q}$.
- Apply Steenrod squares to $\mathrm{Kh}^{i, q}$ (Lipshitz-Sarkar 2012);
- Refine s-invariants (Lipshitz-Sarkar 2013);

Khovanov homotopy type

- Space \mathcal{X}_{L}^{q} whose homology is $K^{i, q}$.
- Apply Steenrod squares to $\mathrm{Kh}^{i, q}$ (Lipshitz-Sarkar 2012);
- Refine s-invariants (Lipshitz-Sarkar 2013);
- Allows to understand better Kh;

Khovanov homotopy type

- Space \mathcal{X}_{L}^{q} whose homology is $K^{i, q}$.
- Apply Steenrod squares to $\mathrm{Kh}^{i, q}$ (Lipshitz-Sarkar 2012);
- Refine s-invariants (Lipshitz-Sarkar 2013);
- Allows to understand better Kh;
- Fits into a general picture.

Khovanov homotopy type

- Space \mathcal{X}_{L}^{q} whose homology is $K^{i, q}$.
- Apply Steenrod squares to $\mathrm{Kh}^{i, q}$ (Lipshitz-Sarkar 2012);
- Refine s-invariants (Lipshitz-Sarkar 2013);
- Allows to understand better Kh;
- Fits into a general picture.
- How can it be constructed?

Important analogy

Our aim is to define Khovanov homotopy type. One space \mathcal{X}_{L}^{q} for each grading.

Important analogy

Our aim is to define Khovanov homotopy type. One space \mathcal{X}_{L}^{q} for each grading.

- Analogy: Morse chain complex.

Important analogy

Our aim is to define Khovanov homotopy type. One space \mathcal{X}_{L}^{q} for each grading.

- Analogy: Morse chain complex.
- Does the Morse chain complex define a space?

Important analogy

Our aim is to define Khovanov homotopy type. One space \mathcal{X}_{L}^{q} for each grading.

- Analogy: Morse chain complex.
- Does the Morse chain complex define a space?
- No! $\mathbb{C} P^{2} \sqcup \mathbb{C} P^{2}$ and $S^{4} \sqcup S^{2} \times S^{2}$ admit Morse functions with 2 minima, 2 maxima and 2 critical points of index 2. The Morse complex is trivial for dimensional reasons.

Important analogy

Our aim is to define Khovanov homotopy type. One space \mathcal{X}_{L}^{q} for each grading.

- Analogy: Morse chain complex.
- Does the Morse chain complex define a space?
- No! $\mathbb{C} P^{2} \sqcup \mathbb{C} P^{2}$ and $S^{4} \sqcup S^{2} \times S^{2}$ admit Morse functions with 2 minima, 2 maxima and 2 critical points of index 2. The Morse complex is trivial for dimensional reasons.
- Need to incorporate moduli spaces of trajectories.

Morse theory

- Let $f: M \rightarrow \mathbb{R}$ be a Morse-Smale function on a Riemannian manifold.

Morse theory

- Let $f: M \rightarrow \mathbb{R}$ be a Morse-Smale function on a Riemannian manifold.
- For each pair of critical points x, y we define $\mathcal{M}(x, y)$ to be the space of trajectories from x to y.

Morse theory

- Let $f: M \rightarrow \mathbb{R}$ be a Morse-Smale function on a Riemannian manifold.
- For each pair of critical points x, y we define $\mathcal{M}(x, y)$ to be the space of trajectories from x to y.
- Formally $\mathcal{M}(x, y)$ is the intersection of corresponding stable and unstable trajectories.

Morse theory

- Let $f: M \rightarrow \mathbb{R}$ be a Morse-Smale function on a Riemannian manifold.
- For each pair of critical points x, y we define $\mathcal{M}(x, y)$ to be the space of trajectories from x to y.
- Formally $\mathcal{M}(x, y)$ is the intersection of corresponding stable and unstable trajectories.
- $\mathcal{M}(x, y)$ is a manifold-with-corners of dimension ind $y-$ ind $x-1$.

Morse theory

- Let $f: M \rightarrow \mathbb{R}$ be a Morse-Smale function on a Riemannian manifold.
- For each pair of critical points x, y we define $\mathcal{M}(x, y)$ to be the space of trajectories from x to y.
- Formally $\mathcal{M}(x, y)$ is the intersection of corresponding stable and unstable trajectories.
- $\mathcal{M}(x, y)$ is a manifold-with-corners of dimension ind $y-$ ind $x-1$.
- if ind $x<$ ind $z<$ ind y the product $\mathcal{M}(x, z) \times \mathcal{M}(z, y)$ embeds to the boundary of $\mathcal{M}(x, y)$.

Morse theory

- Let $f: M \rightarrow \mathbb{R}$ be a Morse-Smale function on a Riemannian manifold.
- For each pair of critical points x, y we define $\mathcal{M}(x, y)$ to be the space of trajectories from x to y.
- Formally $\mathcal{M}(x, y)$ is the intersection of corresponding stable and unstable trajectories.
- $\mathcal{M}(x, y)$ is a manifold-with-corners of dimension ind $y-$ ind $x-1$.
- if ind $x<$ ind $z<$ ind y the product $\mathcal{M}(x, z) \times \mathcal{M}(z, y)$ embeds to the boundary of $\mathcal{M}(x, y)$.

Most important example

Morse theory

- Let $f: M \rightarrow \mathbb{R}$ be a Morse-Smale function on a Riemannian manifold.
- For each pair of critical points x, y we define $\mathcal{M}(x, y)$ to be the space of trajectories from x to y.
- Formally $\mathcal{M}(x, y)$ is the intersection of corresponding stable and unstable trajectories.
- $\mathcal{M}(x, y)$ is a manifold-with-corners of dimension ind $y-$ ind $x-1$.
- if ind $x<$ ind $z<$ ind y the product $\mathcal{M}(x, z) \times \mathcal{M}(z, y)$ embeds to the boundary of $\mathcal{M}(x, y)$.

Most important example

Example

Set $M=[0,1]^{n}$ and $f\left(x_{1}, \ldots, x_{n}\right)=\sum f\left(x_{i}\right)$, where $f(x)=-x^{3}+3 x^{2}$.

Flow category

Definition
 We say that \mathcal{C} is a flow category if

Flow category

Definition

We say that \mathcal{C} is a flow category if

- Ob \mathcal{C} form a finite set;

Flow category

Definition

We say that \mathcal{C} is a flow category if

- ObC form a finite set;
- there is a grading function $\mathrm{gr}: \mathrm{Ob} \mathcal{C} \rightarrow \mathbb{Z}$;

Definition

We say that \mathcal{C} is a flow category if

- ObC form a finite set;
- there is a grading function $\mathrm{gr}: \mathrm{Ob} \mathcal{C} \rightarrow \mathbb{Z}$;
- if $x, y \in \operatorname{Ob} \mathcal{C}$ and $y \neq x$, then $\mathcal{M}(x, y)$ is a compact $\operatorname{gr}(y)-\operatorname{gr}(x)$ - 1-dimensional manifold with corners, $\mathcal{M}(x, x)=\{p t\} ;$

Flow category

Definition

We say that \mathcal{C} is a flow category if

- ObC form a finite set;
- there is a grading function $\mathrm{gr}: \mathrm{Ob} \mathcal{C} \rightarrow \mathbb{Z}$;
- if $x, y \in \operatorname{Ob} \mathcal{C}$ and $y \neq x$, then $\mathcal{M}(x, y)$ is a compact $\operatorname{gr}(y)-\operatorname{gr}(x)$ - 1-dimensional manifold with corners, $\mathcal{M}(x, x)=\{p t\} ;$
- if $x, y, z \in \operatorname{Ob} \mathcal{C}$ and $\operatorname{gr}(x)<\operatorname{gr}(z)<\operatorname{gr}(y)$, there is a composition map $\mathcal{M}(x, z) \times \mathcal{M}(z, y) \rightarrow \partial \mathcal{M}(x, y)$, the boundary of $\mathcal{M}(x, y)$ is all covered by such products;

Flow category

Definition

We say that \mathcal{C} is a flow category if

- ObC form a finite set;
- there is a grading function $\mathrm{gr}: \mathrm{Ob} \mathcal{C} \rightarrow \mathbb{Z}$;
- if $x, y \in \operatorname{Ob} \mathcal{C}$ and $y \neq x$, then $\mathcal{M}(x, y)$ is a compact $\operatorname{gr}(y)-\operatorname{gr}(x)$ - 1-dimensional manifold with corners, $\mathcal{M}(x, x)=\{p t\} ;$
- if $x, y, z \in \operatorname{Ob} \mathcal{C}$ and $\operatorname{gr}(x)<\operatorname{gr}(z)<\operatorname{gr}(y)$, there is a composition map $\mathcal{M}(x, z) \times \mathcal{M}(z, y) \rightarrow \partial \mathcal{M}(x, y)$, the boundary of $\mathcal{M}(x, y)$ is all covered by such products;
- there are various compatibility relations of the composition map.

Cube flow category

Definition

The cube flow category is the flow category associated with the Morse function $f:[0,1]^{n} \rightarrow \mathbb{R}$ defined by $\sum\left(3 x_{i}^{2}-x_{i}^{3}\right)$.

Cube flow category

Definition

The cube flow category is the flow category associated with the Morse function $f:[0,1]^{n} \rightarrow \mathbb{R}$ defined by $\sum\left(3 x_{i}^{2}-x_{i}^{3}\right)$.

- Each of the moduli spaces is topologically a disk;

Cube flow category

Definition

The cube flow category is the flow category associated with the Morse function $f:[0,1]^{n} \rightarrow \mathbb{R}$ defined by $\sum\left(3 x_{i}^{2}-x_{i}^{3}\right)$.

- Each of the moduli spaces is topologically a disk;
- There is a nice description of the flow category using permutohedra.

Cube flow category

Definition

The cube flow category is the flow category associated with the Morse function $f:[0,1]^{n} \rightarrow \mathbb{R}$ defined by $\sum\left(3 x_{i}^{2}-x_{i}^{3}\right)$.

- Each of the moduli spaces is topologically a disk;
- There is a nice description of the flow category using permutohedra.
Does any Morse flow category determine the underlying manifold?

Framings

Example

Consider two copies of $D^{2} \times S^{1}$. Glue along boundary.

Example

Consider two copies of $D^{2} \times S^{1}$. Glue along boundary. Depending on the gluing, we can obtain any lens space.

Example

Consider two copies of $D^{2} \times S^{1}$. Glue along boundary. Depending on the gluing, we can obtain any lens space.

Some extra information is needed to impose uniqueness.

Example

Consider two copies of $D^{2} \times S^{1}$. Glue along boundary. Depending on the gluing, we can obtain any lens space.

Some extra information is needed to impose uniqueness.

- First construction of Lipshitz and Sarkar: embedding of \mathcal{M} into \mathbb{R}^{d} in a consistent way;

Example

Consider two copies of $D^{2} \times S^{1}$. Glue along boundary. Depending on the gluing, we can obtain any lens space.

Some extra information is needed to impose uniqueness.

- First construction of Lipshitz and Sarkar: embedding of \mathcal{M} into \mathbb{R}^{d} in a consistent way;
- Then perform Cohen-Jones-Segal construction.

Framings

Example

Consider two copies of $D^{2} \times S^{1}$. Glue along boundary. Depending on the gluing, we can obtain any lens space.

Some extra information is needed to impose uniqueness.

- First construction of Lipshitz and Sarkar: embedding of \mathcal{M} into \mathbb{R}^{d} in a consistent way;
- Then perform Cohen-Jones-Segal construction.
- Different, more specific: define an appropriate functor from \mathcal{C} to a cube category (cover) and use the embedding of Cube(n).

Labelled resolutions

Definition

For $v \in\{0,1\}^{n}$ define $(D(v), \mathbf{x})$ to be a pair, where $D(v)$ is a resolution and \mathbf{x} assigns to each of the circles in $D(v)$ either x_{+} or $X_{\text {- }}$.

Labelled resolutions

Definition

For $v \in\{0,1\}^{n}$ define $(D(v), \mathbf{x})$ to be a pair, where $D(v)$ is a resolution and \mathbf{x} assigns to each of the circles in $D(v)$ either x_{+} or $X_{\text {- }}$.

- For $x=(D(v), \mathbf{x})$ we set $f(x)=v \in \operatorname{Cube}(n)$.

Labelled resolutions

Definition

For $v \in\{0,1\}^{n}$ define $(D(v), \mathbf{x})$ to be a pair, where $D(v)$ is a resolution and \mathbf{x} assigns to each of the circles in $D(v)$ either x_{+} or $X_{\text {- }}$.

- For $x=(D(v), \mathbf{x})$ we set $\mathfrak{f}(x)=v \in \operatorname{Cube}(n)$.
- $\operatorname{gr}(x)=|\mathfrak{f}(x)|$.

Labelled resolutions

Definition

For $v \in\{0,1\}^{n}$ define $(D(v), \mathbf{x})$ to be a pair, where $D(v)$ is a resolution and \mathbf{x} assigns to each of the circles in $D(v)$ either x_{+} or $X_{\text {- }}$.

- For $x=(D(v), \mathbf{x})$ we set $f(x)=v \in \operatorname{Cube}(n)$.
- $\operatorname{gr}(x)=|f(x)|$.
- Think of $(D(v), \mathbf{x})$ as generators of CKh.

Labelled resolutions

Definition

For $v \in\{0,1\}^{n}$ define $(D(v), \mathbf{x})$ to be a pair, where $D(v)$ is a resolution and \mathbf{x} assigns to each of the circles in $D(v)$ either x_{+} or $X_{\text {- }}$.

- For $x=(D(v), \mathbf{x})$ we set $f(x)=v \in \operatorname{Cube}(n)$.
- $\operatorname{gr}(x)=|f(x)|$.
- Think of $(D(v), \mathbf{x})$ as generators of CKh.
- We define a partial order $x \prec y$ if y can be obtained from x as a 'partial differential'.

Labelled resolutions

Definition

For $v \in\{0,1\}^{n}$ define $(D(v), \mathbf{x})$ to be a pair, where $D(v)$ is a resolution and \mathbf{x} assigns to each of the circles in $D(v)$ either x_{+} or $X_{\text {- }}$.

- For $x=(D(v), \mathbf{x})$ we set $\mathfrak{f}(x)=v \in \operatorname{Cube}(n)$.
- $\operatorname{gr}(x)=|f(x)|$.
- Think of $(D(v), \mathbf{x})$ as generators of CKh.
- We define a partial order $x \prec y$ if y can be obtained from x as a 'partial differential'.
- Our aim is to define $\mathcal{M}(x, y)$ for all x, y such that $x \prec y$.

Khovanov flow category

- Objects are $(D(v), \mathbf{x})$;

Khovanov flow category

- Objects are $(D(v), \mathbf{x})$;
- Morphisms are $\mathcal{M}(x, y)$. Constructed inductively.

Khovanov flow category

- Objects are $(D(v), \mathbf{x})$;
- Morphisms are $\mathcal{M}(x, y)$. Constructed inductively.
- First if $x=y$, then as $\operatorname{gr}(y)-\operatorname{gr}(x)$ grows.

Khovanov flow category

- Objects are $(D(v), \mathbf{x})$;
- Morphisms are $\mathcal{M}(x, y)$. Constructed inductively.
- First if $x=y$, then as $\operatorname{gr}(y)-\operatorname{gr}(x)$ grows.
- The key property is that we want to have a map $\mathfrak{f}: \mathcal{M}(x, y)) \rightarrow \mathcal{M}_{\text {Cube }(n)}(\mathfrak{f}(x), \mathfrak{f}(y))$, which is a trivial cover.

Khovanov flow category

- Objects are $(D(v), \mathbf{x})$;
- Morphisms are $\mathcal{M}(x, y)$. Constructed inductively.
- First if $x=y$, then as $\operatorname{gr}(y)-\operatorname{gr}(x)$ grows.
- The key property is that we want to have a map $\mathfrak{f}: \mathcal{M}(x, y)) \rightarrow \mathcal{M}_{\text {Cube }(n)}(\mathfrak{f}(x), \mathfrak{f}(y))$, which is a trivial cover.
- After checking some compatibility relations, \mathfrak{f} becomes a functor from the Khovanov flow category to Cube(n).

Khovanov flow category

- Objects are $(D(v), \mathbf{x})$;
- Morphisms are $\mathcal{M}(x, y)$. Constructed inductively.
- First if $x=y$, then as $\operatorname{gr}(y)-\operatorname{gr}(x)$ grows.
- The key property is that we want to have a map $\mathfrak{f}: \mathcal{M}(x, y)) \rightarrow \mathcal{M}_{\text {Cube }(n)}(\mathfrak{f}(x), \mathfrak{f}(y))$, which is a trivial cover.
- After checking some compatibility relations, \mathfrak{f} becomes a functor from the Khovanov flow category to Cube(n).
- Based on this functor one can define a framing and perform a construction of \mathcal{X}_{D}.

Periodic knots

Definition

A knot $K \subset S^{3}$ is p-periodic if it admits a rotational symmetry with the symmetry axis disjoint from K.

Periodic knots

Definition

A knot $K \subset S^{3}$ is p-periodic if it admits a rotational symmetry with the symmetry axis disjoint from K.

Equivariant Khovanov homology

- For a periodic diagram D, the group \mathbb{Z}_{p} permutes the cube of resolution.

Equivariant Khovanov homology

- For a periodic diagram D, the group \mathbb{Z}_{p} permutes the cube of resolution.
- Take a ring R. Then $\operatorname{CKh}(D ; R)$ has a structure of $\Lambda=R\left[\mathbb{Z}_{p}\right]$-module.

Equivariant Khovanov homology

- For a periodic diagram D, the group \mathbb{Z}_{p} permutes the cube of resolution.
- Take a ring R. Then $\operatorname{CKh}(D ; R)$ has a structure of $\Lambda=R\left[\mathbb{Z}_{p}\right]$-module.

Definition (Politarczyk)

For any \wedge-module M define the equivariant Khovanov homology as

$$
\operatorname{EKh}(K ; M)=\operatorname{Ext}_{\Lambda}(M, \operatorname{CKh}(D ; R))
$$

Equivariant Khovanov homology

- For a periodic diagram D, the group \mathbb{Z}_{p} permutes the cube of resolution.
- Take a ring R. Then $\operatorname{CKh}(D ; R)$ has a structure of $\Lambda=R\left[\mathbb{Z}_{p}\right]$-module.

Definition (Politarczyk)

For any \wedge-module M define the equivariant Khovanov homology as

$$
\operatorname{EKh}(K ; M)=\operatorname{Ext}_{\Lambda}(M, \operatorname{CKh}(D ; R))
$$

- Does not depend on the choice of the diagram.

Equivariant Khovanov homology

- For a periodic diagram D, the group \mathbb{Z}_{p} permutes the cube of resolution.
- Take a ring R. Then $\operatorname{CKh}(D ; R)$ has a structure of $\Lambda=R\left[\mathbb{Z}_{p}\right]$-module.

Definition (Politarczyk)

For any \wedge-module M define the equivariant Khovanov homology as

$$
\operatorname{EKh}(K ; M)=\operatorname{Ext}_{\Lambda}(M, \operatorname{CKh}(D ; R))
$$

- Does not depend on the choice of the diagram.
- Most important example: $M=\Lambda$.

Equivariant Khovanov. Properties.

- We can define $E \operatorname{EKh}_{d}(L)=\operatorname{EKh}\left(L ; \mathbb{Z}\left[\xi_{d}\right]\right)$ for any $d \mid p$. This is the third gradation, coming from representations of \mathbb{Z}_{p}.

Equivariant Khovanov. Properties.

- We can define $E K h_{d}(L)=\operatorname{EKh}\left(L ; \mathbb{Z}\left[\xi_{d}\right]\right)$ for any $d \mid p$. This is the third gradation, coming from representations of \mathbb{Z}_{p}.
- If $R=\mathbb{Z}_{m}$ and p is invertible in R, then $\operatorname{Ext}_{\wedge}^{i}=0$ for $i>0$ and $\operatorname{EKh}(L ; \Lambda)=\operatorname{Kh}(L ; R)$.

Equivariant Khovanov. Properties.

- We can define $E K h_{d}(L)=\operatorname{EKh}\left(L ; \mathbb{Z}\left[\xi_{d}\right]\right)$ for any $d \mid p$. This is the third gradation, coming from representations of \mathbb{Z}_{p}.
- If $R=\mathbb{Z}_{m}$ and p is invertible in R, then $\operatorname{Ext}_{\wedge}^{i}=0$ for $i>0$ and $\operatorname{EKh}(L ; \Lambda)=\operatorname{Kh}(L ; R)$.
- On the other hand we have a Schur decomposition of $\operatorname{Hom}_{\wedge}(\wedge ; C K h(D))$.

Equivariant flow category

Recall the definition:

Definition

We say that \mathcal{C} is a flow category if

- Ob \mathcal{C} form a finite set;
- there is a grading function $\mathrm{gr}: \mathrm{Ob} \mathcal{C} \rightarrow \mathbb{Z}$;
- if $x, y \in \operatorname{Ob} \mathcal{C}$ and $y \neq x$, then $\mathcal{M}(x, y)$ is a compact $\operatorname{gr}(y)-\operatorname{gr}(x)$ - 1-dimensional manifold with corners, $\mathcal{M}(x, x)=\{p t\} ;$
- if $x, y, z \in \operatorname{ObC}$ and $\operatorname{gr}(x)<\operatorname{gr}(z)<\operatorname{gr}(y)$, there is a composition $\operatorname{map} \mathcal{M}(x, z) \times \mathcal{M}(z, y) \rightarrow \partial \mathcal{M}(x, y)$, the boundary of $\mathcal{M}(x, y)$ is all covered by such products;
- there are various compatibility relations of the composition map.

Equivariant flow category

Recall the definition:

Definition

We say that \mathcal{C} is a flow category if

- Ob \mathcal{C} form a finite set;
- there is a grading function $\mathrm{gr}: \mathrm{Ob} \mathcal{C} \rightarrow \mathbb{Z}$;
- if $x, y \in \operatorname{Ob} \mathcal{C}$ and $y \neq x$, then $\mathcal{M}(x, y)$ is a compact $\operatorname{gr}(y)-\operatorname{gr}(x)$ - 1-dimensional manifold with corners, $\mathcal{M}(x, x)=\{p t\} ;$
- if $x, y, z \in \operatorname{ObC}$ and $\operatorname{gr}(x)<\operatorname{gr}(z)<\operatorname{gr}(y)$, there is a composition $\operatorname{map} \mathcal{M}(x, z) \times \mathcal{M}(z, y) \rightarrow \partial \mathcal{M}(x, y)$, the boundary of $\mathcal{M}(x, y)$ is all covered by such products;
- there are various compatibility relations of the composition map.

The key idea: replace the grading function to gr: $\mathrm{Ob} \mathcal{C} \rightarrow R O(G)$.

- $R O(G)$ is the Grothendieck ring of real orthogonal representations of G
- $R O(G)$ is the Grothendieck ring of real orthogonal representations of G
- the axiom that $\mathcal{M}(x, y)$ be a manifold of dimension $\operatorname{gr}(y)-\operatorname{gr}(x)$ should be changed
- $R O(G)$ is the Grothendieck ring of real orthogonal representations of G
- the axiom that $\mathcal{M}(x, y)$ be a manifold of dimension $\operatorname{gr}(y)-\operatorname{gr}(x)$ should be changed
- it is replaced by requirement that it is a G-manifold of dimension $\left.\operatorname{gr}(y)\right|_{G_{x, y}}-\left.\operatorname{gr}(x)\right|_{G(x, y)}$, where $G_{x, y}=G_{x} \cap G_{y}$ is the intersection of isotropy groups.
- $R O(G)$ is the Grothendieck ring of real orthogonal representations of G
- the axiom that $\mathcal{M}(x, y)$ be a manifold of dimension $\operatorname{gr}(y)-\operatorname{gr}(x)$ should be changed
- it is replaced by requirement that it is a G-manifold of dimension $\left.\operatorname{gr}(y)\right|_{G_{x, y}}-\left.\operatorname{gr}(x)\right|_{G(x, y)}$, where $G_{x, y}=G_{x} \cap G_{y}$ is the intersection of isotropy groups.
- Saying that a G-manifold has dimension $V-W$ if $\left.T_{z} M \oplus W\right|_{G_{z}}=\left.V\right|_{G_{z}}$ for any $z \in M$.
- $R O(G)$ is the Grothendieck ring of real orthogonal representations of G
- the axiom that $\mathcal{M}(x, y)$ be a manifold of dimension $\operatorname{gr}(y)-\operatorname{gr}(x)$ should be changed
- it is replaced by requirement that it is a G-manifold of dimension $\left.\operatorname{gr}(y)\right|_{G_{x, y}}-\left.\operatorname{gr}(x)\right|_{G(x, y)}$, where $G_{x, y}=G_{x} \cap G_{y}$ is the intersection of isotropy groups.
- Saying that a G-manifold has dimension $V-W$ if $\left.T_{z} M \oplus W\right|_{G_{z}}=\left.V\right|_{G_{z}}$ for any $z \in M$.
- In our setting we define consistently the equivariant grading.
- $R O(G)$ is the Grothendieck ring of real orthogonal representations of G
- the axiom that $\mathcal{M}(x, y)$ be a manifold of dimension $\operatorname{gr}(y)-\operatorname{gr}(x)$ should be changed
- it is replaced by requirement that it is a G-manifold of dimension $\left.\operatorname{gr}(y)\right|_{G_{x, y}}-\left.\operatorname{gr}(x)\right|_{G(x, y)}$, where $G_{x, y}=G_{x} \cap G_{y}$ is the intersection of isotropy groups.
- Saying that a G-manifold has dimension $V-W$ if $\left.T_{z} M \oplus W\right|_{G_{z}}=\left.V\right|_{G_{z}}$ for any $z \in M$.
- In our setting we define consistently the equivariant grading.
- The functor \mathfrak{f} commutes with the group action.

Main result

Theorem (—,Politarczyk, Silvero)

Everything works.

Main result

Theorem (—,Politarczyk, Silvero)

If L is an m-periodic link, then spaces \mathcal{X}_{L}^{q} are well-defined up to stable equivariant homotopy equivalence.

Main result

Theorem (-,Politarczyk, Silvero)

If L is an m-periodic link, then spaces \mathcal{X}_{L}^{q} are well-defined up to stable equivariant homotopy equivalence.

- The proof is much more involved;

Main result

Theorem (—,Politarczyk, Silvero)

If L is an m-periodic link, then spaces \mathcal{X}_{L}^{q} are well-defined up to stable equivariant homotopy equivalence.

- The proof is much more involved;
- Invariance under Reidemeister moves uses the fact that the cube category Cube admits a group action and for any $H \subset \mathbb{Z}_{m}$ the fixed point category Cube ${ }^{H}$ is again the cube category.

Borel homology of

Theorem (—,Politarczyk, Silvero)

Let L be an m-periodic link and suppose \mathbb{F} is a field. For any R-torsion-free $R\left[\mathbb{Z}_{m}\right]$-module M we have an isomorphism of $R\left[\mathbb{Z}_{m}\right]$-modules:

$$
E K h^{i, q}(L ; M) \cong \widetilde{H}_{G}^{*} i\left(\mathcal{X}_{L}^{q}, \operatorname{Hom}_{R}(M, R)\right)
$$

Applications

- Steenrod squares commute with group actions;

Applications

- Steenrod squares commute with group actions;
- Refinement of Borodzik-Politarczyk periodicity criterion;

Applications

- Steenrod squares commute with group actions;
- Refinement of Borodzik-Politarczyk periodicity criterion;
- Potential insight into Khovanov homology of periodic links, like torus links.

Advertisement

If you didn't like the talk you can look at the paper Twisted Blanchfield pairings, twisted signatures and Casson-Gordon invariants, 一, A. Conway, W. Politarczyk

Advertisement

If you didn't like the talk you can look at the paper Twisted Blanchfield pairings, twisted signatures and Casson-Gordon invariants, -, A. Conway, W. Politarczyk Which deals with something entirely different.

