Chern-Simons theory and the higher genus B-model

Andrea Brini
University of Birmingham \& CNRS

Quantum fields, knots and strings, Sep 2018

This talk

Main thread of this talk: search of large N realisations of Chern-Simons invariants of $\left(M^{3}, \mathcal{K}\right)$ in the B-model.

> The overall aim is to extract all-genus results for these invariants from the resulting connection with mirror symmetry, string theory, and the topological recursion.

$$
\text { Message: Chern-Simons } \leftrightarrow \text { Eynard-Orantin }
$$

This talk

Main thread of this talk: search of large N realisations of Chern-Simons invariants of $\left(M^{3}, \mathcal{K}\right)$ in the B-model.
The overall aim is to extract all-genus results for these invariants from the resulting connection with mirror symmetry, string theory, and the topological recursion.
Message: Chern-Simons \leftrightarrow Eynard-Orantin

This talk

Main thread of this talk: search of large N realisations of Chern-Simons invariants of $\left(M^{3}, \mathcal{K}\right)$ in the B-model.
The overall aim is to extract all-genus results for these invariants from the resulting connection with mirror symmetry, string theory, and the topological recursion.
Message: Chern-Simons \leftrightarrow Eynard-Orantin

This talk

This talk is conceptually and materially split into two parts.

> The first part is about $U(N)$ quantum invariants of M^{3} - Chern-Simons partition functions. Here, for constant positive curvature $M^{3}=S^{3} / \Gamma$,

$$
\mathrm{CS}\left(S^{3} / \Gamma\right)=\mathrm{CEO}(\text { Todar })
$$

The second part is about coloured HOMFLY-PT invariants of knots in the three sphere - vevs of Chern-Simons Wilson loops. Here, conjecturally,

This talk

This talk is conceptually and materially split into two parts.
The first part is about $U(N)$ quantum invariants of M^{3} - Chern-Simons partition functions. Here, for constant positive curvature $M^{3}=S^{3} / \Gamma$,

$$
\operatorname{CS}\left(S^{3} / \Gamma\right)=\operatorname{CEO}\left(\text { Toda }_{\Gamma}\right)
$$

[AB-Borot '15; AB '17]
The second part is about coloured HOMFLY-PT invariants of knots in the three sphere - vevs of Chern-Simons Wilson loops. Here, conjecturally,

This talk

This talk is conceptually and materially split into two parts.
The first part is about $U(N)$ quantum invariants of M^{3} - Chern-Simons partition functions. Here, for constant positive curvature $M^{3}=S^{3} / \Gamma$,

$$
\operatorname{CS}\left(S^{3} / \Gamma\right)=\operatorname{CEO}\left(\text { Toda }_{\Gamma}\right)
$$

The second part is about coloured HOMFLY-PT invariants of knots in the three sphere - vevs of Chern-Simons Wilson loops. Here, conjecturally,

$$
\operatorname{CS}\left(S^{3}, \mathcal{K}\right) \stackrel{?}{=} \operatorname{CEO}\left(\mathcal{S}_{\mathcal{K}}\right)
$$

[AB, work in progress]

Outline

(1) Review: $\left(S^{3}, \bigcirc\right)$
(2) $S^{3} \longrightarrow M^{3}$
(3) $\bigcirc \longrightarrow \mathcal{K}$

Review: $\left(S^{3}, \bigcirc\right)$

$U(N)$ Chern-Simons theory at large N

M^{3} smooth, closed, oriented, $\mathcal{K} \simeq S^{1} \hookrightarrow M^{3}, k \in \mathbb{Z}^{\star}, \rho \in \operatorname{Rep}(U(N))$.

Classical action: CS[A]
Partition function: $Z_{\mathrm{CS}}^{M^{3}}(N, k)$
Wilson loops: $W_{\mathrm{CS}}^{M^{\rho}, K}(N, k, \rho)$ (Schur colouring)

Z_{CS} and W_{CS} realise gauge-theoretically the sl${ }_{N}$ RTW invariant of M^{3} and \mathcal{K}.

$U(N)$ Chern-Simons theory at large N

M^{3} smooth, closed, oriented, $\mathcal{K} \simeq S^{1} \hookrightarrow M^{3}, k \in \mathbb{Z}^{\star}, \rho \in \operatorname{Rep}(U(N))$.
Classical action: $\operatorname{CS}[A]$

$$
=\int_{M^{3}} \operatorname{Tr}_{\square}\left(A \wedge \mathrm{~d} A+\frac{2}{3} A^{3}\right)
$$

Partition function: $Z_{C S}^{M^{3}}(N, k)$

Wilson loops: $W_{\mathrm{CS}}^{M^{3}, \mathcal{K}}(N, k, \rho)$
(Schur colouring)

Z_{CS} and W_{CS} realise gauge-theoretically the sl_{N} RTW invariant of M^{3} and \mathcal{K}.

$U(N)$ Chern-Simons theory at large N

 M^{3} smooth, closed, oriented, $\mathcal{K} \simeq S^{1} \hookrightarrow M^{3}, k \in \mathbb{Z}^{\star}, \rho \in \operatorname{Rep}(U(N))$.Classical action: $\operatorname{CS}[A]$

$$
=\int_{M^{3}} \operatorname{Tr}_{\square}\left(A \wedge \mathrm{~d} A+\frac{2}{3} A^{3}\right)
$$

Partition function: $Z_{C S}^{M^{3}}(N, k)$

$$
=\int \mathcal{D} A \exp \left(\frac{k}{2 \pi \mathrm{i}} \operatorname{CS}[A]\right),
$$

(Schur colouring)

$Z_{C S}$ and $W_{C S}$ realise gauge-theoretically the sin R TW invariant of M^{3} and \mathcal{K}.

$U(N)$ Chern-Simons theory at large N

 M^{3} smooth, closed, oriented, $\mathcal{K} \simeq S^{1} \hookrightarrow M^{3}, k \in \mathbb{Z}^{\star}, \rho \in \operatorname{Rep}(U(N))$.Classical action: $\operatorname{CS}[A]$

$$
=\int_{M^{3}} \operatorname{Tr}_{\square}\left(A \wedge \mathrm{~d} A+\frac{2}{3} A^{3}\right)
$$

Partition function: $Z_{C S}^{M^{3}}(N, k)$

$$
=\int \mathcal{D} A \exp \left(\frac{k}{2 \pi \mathrm{i}} \operatorname{CS}[A]\right),
$$

Wilson loops: $W_{C S}^{M^{3}}{ }^{\mathcal{K}}(N, k, \rho)=\frac{\left\langle\operatorname{Tr}_{\rho} \operatorname{Hol}_{\mathcal{K}}(A)\right\rangle}{Z_{C S}^{M^{3}}(N, k)}$
(Schur colouring)

$$
\stackrel{!}{\in} \mathbb{Z}\left[\left(q \triangleq \mathrm{e}^{\frac{2 \pi i}{k+N}}\right)^{ \pm},\left(Q \triangleq \mathrm{e}^{\frac{2 \pi i N}{k+N}}\right)^{ \pm}\right]
$$

$U(N)$ Chern-Simons theory at large N

 M^{3} smooth, closed, oriented, $\mathcal{K} \simeq S^{1} \hookrightarrow M^{3}, k \in \mathbb{Z}^{\star}, \rho \in \operatorname{Rep}(U(N))$.Classical action: $\operatorname{CS}[A]$

$$
=\int_{M^{3}} \operatorname{Tr}_{\square}\left(A \wedge \mathrm{~d} A+\frac{2}{3} A^{3}\right)
$$

Partition function: $Z_{\mathrm{CS}}^{M^{3}}(N, k)$

$$
=\int \mathcal{D} A \exp \left(\frac{k}{2 \pi \mathrm{i}} \operatorname{CS}[A]\right)
$$

Wilson loops: $W_{\mathrm{CS}}^{M^{3}, \mathcal{K}}(N, k, \rho)=\frac{\left\langle\operatorname{Tr}_{\rho} \operatorname{Hol}_{\mathcal{K}}(A)\right\rangle}{Z_{\mathrm{CS}}^{M^{3}}(N, k)}$
(Schur colouring)

$$
\stackrel{!}{\in} \mathbb{Z}\left[\left(q \triangleq \mathrm{e}^{\frac{2 \pi \mathrm{i}}{k+N}}\right)^{ \pm},\left(Q \triangleq \mathrm{e}^{\frac{2 \pi i N}{k+N}}\right)^{ \pm}\right]
$$

Z_{CS} and W_{CS} realise gauge-theoretically the sl_{N} RTW invariant of M^{3} and \mathcal{K}.

$$
M^{3} \simeq S^{3}: \quad W_{\mathrm{CS}}^{M^{3}, \mathcal{K}}(N, k, \rho) \propto H_{\mathcal{K}}^{\rho}(q, Q)
$$

$U(N)$ Chern-Simons theory at large N

Newton colouring:

$$
W_{\mathrm{CS}}^{M^{3}, \mathcal{K}}(N, k, \vec{d})=\left\langle\operatorname{Tr}_{\square} \operatorname{Hol}_{\mathcal{K}}\left(A^{d_{1}}\right) \ldots \operatorname{Tr}_{\square} \operatorname{Hol}_{\mathcal{K}}\left(A^{d_{h}}\right)\right\rangle^{(c)} \stackrel{!}{\in}\left[q^{ \pm}, Q^{ \pm}\right]
$$

Large N generating functions:

$U(N)$ Chern-Simons theory at large N

Newton colouring:

$$
W_{\mathrm{CS}}^{M^{3}, \mathcal{K}}(N, k, \vec{d})=\left\langle\operatorname{Tr}_{\square} \operatorname{Hol}_{\mathcal{K}}\left(A^{d_{1}}\right) \ldots \operatorname{Tr}_{\square} \operatorname{Hol}_{\mathcal{K}}\left(A^{d_{h}}\right)\right\rangle^{(c)} \stackrel{!}{\in} \mathbb{Z}\left[q^{ \pm}, Q^{ \pm}\right]
$$

Large N generating functions:

$$
\omega_{g, h}^{M^{3}, \mathcal{K}}(\vec{x}, Q)=\left[(\ln q)^{2 g-2+h}\right]\left\langle\prod_{i}^{h} \operatorname{Tr}_{\square} \frac{1}{1-x_{i} \operatorname{Hol}_{\mathcal{K}}(A)}\right\rangle^{(c)} \in \mathbb{Z}\left[Q^{ \pm}\right][[\vec{x}]]
$$

$U(N)$ Chern-Simons theory at large N

Newton colouring:

$$
W_{\mathrm{CS}}^{M^{3}, \mathcal{K}}(N, k, \vec{d})=\left\langle\operatorname{Tr}_{\square} \operatorname{Hol}_{\mathcal{K}}\left(A^{d_{1}}\right) \ldots \operatorname{Tr}_{\square} \operatorname{Hol}_{\mathcal{K}}\left(A^{d_{h}}\right)\right\rangle^{(c)} \stackrel{!}{\in} \mathbb{Z}\left[q^{ \pm}, Q^{ \pm}\right]
$$

Large N generating functions:

$$
\begin{gathered}
\omega_{g, h}^{M^{3}, \mathcal{K}}(\vec{x}, Q)=\left[(\ln q)^{2 g-2+h}\right]\left\langle\prod_{i}^{h} \operatorname{Tr}_{\square} \frac{1}{1-x_{i} \operatorname{Hol}_{\mathcal{K}}(A)}\right\rangle^{(c)} \in \mathbb{Z}\left[Q^{ \pm}\right][[\vec{x}]] \\
W_{\mathrm{CS}}^{M^{3}, \mathcal{K}}(N, k, \rho) \leftrightarrow W_{\mathrm{CS}}^{M^{3}, \mathcal{K}}(N, k, \vec{d}) \leftrightarrow \omega_{g, h}^{M^{3}, \mathcal{K}}(\vec{x}, Q)
\end{gathered}
$$

Two stringy viewpoints on $\omega_{g, h}^{M^{3}, \mathcal{K}}$

Take A: counts of open holomorphic curves
"Arnold's principle": smooth invariants for (M, S) via symplectic invariants of ($T^{*} M, N_{S / M}^{*} S$)
CS on $\left(S^{3}, \mathcal{K}\right) \longleftrightarrow$ open A-model on $\left(T^{*} S^{3}, N_{\mathcal{K}}^{*} / S^{3} \mathcal{K}\right)$

At large (N, k) :
CS on $\left(S^{3}, \mathcal{K}\right) \leftarrow$ open/closed A-model on $\left(X=\operatorname{Tot}\left(O^{0^{2}}(-1)_{p 1}\right), L_{K}\right)$

Two stringy viewpoints on $\omega_{g, h}^{M^{3}, \mathcal{K}}$

Take A: counts of open holomorphic curves
"Arnold's principle": smooth invariants for (M, S) via symplectic invariants of ($T^{*} M, N_{S / M}^{*} S$)
CS on $\left(S^{3}, \mathcal{K}\right) \longleftrightarrow$ open A-model on $\left(T^{*} S^{3}, N_{\mathcal{K} / S^{3}}^{*} \mathcal{K}\right)$
[Witten '92, Ooguri-Vafa '99]
At large (N, k) :
CS on $\left(S^{3}, \mathcal{K}\right) \longleftrightarrow$ open/closed A-model on $\left(X=\operatorname{Tot}\left(O^{\oplus}(-1) p_{1}\right), L_{K}\right)$

Two stringy viewpoints on $\omega_{g, h}^{M^{3}, \mathcal{K}}$

Take A : counts of open holomorphic curves
"Arnold's principle": smooth invariants for (M, S) via symplectic invariants of $\left(T^{*} M, N_{S / M}^{*} S\right)$
CS on $\left(S^{3}, \mathcal{K}\right) \longleftrightarrow$ open A-model on $\left(T^{*} S^{3}, N_{\mathcal{K} / S^{3}}^{*} \mathcal{K}\right)$
[Witten '92, Ooguri-Vafa '99]
At large (N, k) :
CS on $\left(S^{3}, \mathcal{K}\right) \longleftrightarrow$ open/closed A-model on $\left(X=\operatorname{Tot}\left(\mathcal{O}^{\oplus 2}(-1)_{\mathbb{P}^{1}}\right), L_{\mathcal{K}}\right)$
[Gopakumar-Vafa '98, Ooguri-Vafa '99]

Two stringy viewpoints on $\omega_{g, h}^{M^{3}, \mathcal{K}}$

Take A : counts of open holomorphic curves
$\mathcal{K}=\bigcirc: L_{\mathcal{K}}=L_{\bigcirc}=X^{\sigma}, \sigma^{2}=1, \sigma(\omega)=-\omega$.

$$
\left.N_{g, h}^{X, L_{O}}(\beta, \vec{d}):=\int_{\left[\overline{\mathcal{M}}_{g, h}\right.} X, L_{O}(\beta, \vec{d})\right]_{\text {vir }} 1
$$

[Katz-Liu, Li-Song '01]

$$
\mathrm{GW}_{g, h}^{X, L_{○}}:=\sum_{\vec{d}, \beta} N_{g, h}^{X, L_{O}}(\beta, \vec{d}) Q^{\beta} \vec{x}^{\vec{d}}
$$

Two stringy viewpoints on $\omega_{g, h}^{M^{3}, \mathcal{K}}$

Take A : counts of open holomorphic curves
$\mathcal{K}=\bigcirc: L_{\mathcal{K}}=L_{\bigcirc}=X^{\sigma}, \sigma^{2}=1, \sigma(\omega)=-\omega$.

$$
\left.N_{g, h}^{X, L_{O}}(\beta, \vec{d}):=\int_{\left[\overline{\mathcal{M}}_{g, h}\right.} X, L_{O}(\beta, \vec{d})\right]_{\text {vir }} 1
$$

[Katz-Liu, Li-Song '01]

$$
\mathrm{GW}_{g, h}^{X, L_{O}}:=\sum_{\vec{d}, \beta} N_{g, h}^{X, L_{O}}(\beta, \vec{d}) Q^{\beta} \vec{x}^{\vec{d}}=\omega_{g, h}^{S^{3}, \bigcirc}
$$

Two stringy viewpoints on $\omega_{g h}^{M^{\beta}, \mathcal{K}}$
Take B : spectral curves and the topological recursion

Two stringy viewpoints on $\omega_{g, h}^{M^{3}, \mathcal{K}}$

Take B: spectral curves and the topological recursion

$\mathrm{CEO}_{0,1}\left[\mathcal{S}_{\bigcirc}\right]=\frac{\log Y(x)}{X}$
$\mathrm{CEO}_{0,2}\left[\mathcal{S}_{\bigcirc}\right]=B\left(X_{1}, X_{2}\right)$
$\mathrm{CEO}_{g, h}\left[\mathcal{S}_{\circ}\right]$
$=\sum_{\mathrm{d} X(p)=0} \operatorname{Res}_{p} K_{\mathrm{CEO}}\left[\mathcal{S}_{\mathrm{O}}\right]\left[\mathrm{CEO}_{g-1, h+1}+\sum_{g^{\prime}, h^{\prime}} \mathrm{CEO}_{g-g^{\prime}, h-h^{\prime}} \mathrm{CEO}_{g^{\prime}, h^{\prime}}\right]$

Two stringy viewpoints on $\omega_{g, h}^{M^{3}, \mathcal{K}}$

Take B: spectral curves and the topological recursion

$$
\begin{aligned}
& \mathrm{CEO}_{0,1}\left[\mathcal{S}_{\bigcirc}\right]=\frac{\log Y(x)}{X}=\mathrm{GW}_{0,1}^{X, L_{O}}=\omega_{0,1}^{S^{3}, \bigcirc} \\
& \mathrm{CEO}_{0,2}\left[\mathcal{S}_{\bigcirc}\right]=B\left(X_{1}, X_{2}\right)=\mathrm{GW}_{0,2}^{X, L}=\omega_{0,2}^{S^{3}, \bigcirc} \\
& \mathrm{CEO}_{g, h}\left[\mathcal{S}_{\bigcirc}\right]=\mathrm{GW}_{g, h}^{X, L_{O}}=\omega_{g, h}^{S^{3}, \bigcirc} \\
& =\sum_{\mathrm{d} X(p)=0} \operatorname{Res}_{p} K_{\mathrm{CEO}}\left[\mathcal{S}_{\bigcirc}\right]\left[\mathrm{CEO}_{g-1, h+1}+\sum_{g^{\prime}, h^{\prime}} \mathrm{CEO}_{g-g^{\prime}, h-h^{\prime}} \mathrm{CEO}_{g^{\prime}, h^{\prime}}\right]
\end{aligned}
$$

Two stringy viewpoints on $\omega_{g . h}^{M^{3}, \mathcal{K}}$

Take B : spectral curves and the topological recursion

$$
\mathrm{CEO}_{0,1}\left[\mathcal{S}_{\bigcirc}\right]=\frac{\log Y(x)}{X}=\mathrm{GW}_{0,1}^{X, L \bigcirc}=\omega_{0,1}^{S^{3}, \bigcirc}
$$

$$
\mathrm{CEO}_{0,2}\left[\mathcal{S}_{\bigcirc}\right]=B\left(X_{1}, X_{2}\right)=\mathrm{GW}_{0,2}^{X, L ○}=\omega_{0,2}^{S^{3}, \mathrm{O}}
$$

$$
\mathrm{CEO}_{g, h}\left[\mathcal{S}_{\bigcirc}\right]=\mathrm{GW}_{g, h}^{X, L_{O}}=\omega_{g, h}^{s^{3}, \mathrm{O}}
$$

$$
=\sum_{\mathrm{d} X(p)=0} \operatorname{Res}_{p} K_{\mathrm{CEO}}\left[\mathcal{S}_{\mathrm{O}}\right]\left[\mathrm{CEO}_{g-1, h+1}+\sum_{g^{\prime}, h^{\prime}} \mathrm{CEO}_{g-g^{\prime}, h-h^{\prime}} \mathrm{CEO}_{g^{\prime}, h^{\prime}}\right]
$$

$\left(\mathrm{CEO}_{g, 0}\left[\mathcal{S}_{\bigcirc}\right]=\mathrm{GW}_{g}(X)\right)$

Yeah but...

...this is just one (trivial) example!

Want to: find viewpoint B for

Yeah but...

...this is just one (trivial) example!
Want to: find viewpoint B for

Yeah but...

...this is just one (trivial) example!
Want to: find viewpoint B for

- $S^{3} \longrightarrow M^{3}$?

Yeah but...

...this is just one (trivial) example!
Want to: find viewpoint B for

- $S^{3} \longrightarrow M^{3}$?
- $\bigcirc \longrightarrow \mathcal{K}$?

Yeah but...

...this is just one (trivial) example!
Want to: find viewpoint B for

- $S^{3} \longrightarrow M^{3}$? (in an arbitrary flat background)
- $\bigcirc \longrightarrow \mathcal{K}$?

Part I: $S^{3} \longrightarrow M^{3}$

$S^{3} \longrightarrow M^{3}$

Take M^{3} a Clifford-Klein 3-manifold:

$$
\exists g \mid \operatorname{Ric}(g)>0 \Leftrightarrow M^{3} \simeq S^{3} / \Gamma, \Gamma \subset S O(4) .
$$

Examples:

$$
\begin{aligned}
& \text { Type } A_{1}: \Gamma=\mathbb{Z} / 2 \Rightarrow M^{3} \simeq \mathbb{R} P^{3} \\
& \text { Type } E_{8}: \Gamma=\mathbb{I}_{120} \Rightarrow M^{3} \simeq \Sigma(2,3,5)
\end{aligned}
$$

(1) Find GW dual X_{Γ}, if any.
(2) Find spectral curve dual \mathcal{S}_{Γ}, if any.
(3) Prove that large N duality, mirror symmetry, and the topological recursion all hold true.

$S^{3} \longrightarrow M^{3}$

Take M^{3} a Clifford-Klein 3-manifold:

$$
\exists g \mid \operatorname{Ric}(g)>0 \Leftrightarrow M^{3} \simeq S^{3} / \Gamma,\ulcorner\subset S O(4) .
$$

Examples:

(1) Find GW dual X_{Γ}, if any.
 (2) Find spectral curve dual \mathcal{S}_{Γ}, if any.
 (3) Prove that large N duality, mirror symmetry, and the topological recursion all hold true.

$S^{3} \longrightarrow M^{3}$
Take M^{3} a Clifford-Klein 3-manifold:

$$
\exists g \mid \operatorname{Ric}(g)>0 \Leftrightarrow M^{3} \simeq S^{3} / \Gamma, \Gamma \subset S O(4) .
$$

Examples:

$$
\begin{aligned}
& \text { Type } A_{1}: \Gamma=\mathbb{Z} / 2 \Rightarrow M^{3} \simeq \mathbb{R} P^{3} \\
& \text { Type } E_{8}: \Gamma=\mathbb{I}_{120} \Rightarrow M^{3} \simeq \Sigma(2,3,5)
\end{aligned}
$$

(0) Find GW dual X_{Γ}, if any.

(2) Find spectral curve dual \mathcal{S}_{Γ}, if any.
© Prove that large N duality, mirror symmetry, and the topological recursion all hold true.
$S^{3} \longrightarrow M^{3}$
Take M^{3} a Clifford-Klein 3-manifold:

$$
\exists g \mid \operatorname{Ric}(g)>0 \Leftrightarrow M^{3} \simeq S^{3} / \Gamma, \Gamma \subset S O(4) .
$$

Examples:

$$
\begin{aligned}
& \text { Type } A_{1}: \Gamma=\mathbb{Z} / 2 \Rightarrow M^{3} \simeq \mathbb{R} P^{3} \\
& \text { Type } E_{8}: \Gamma=\mathbb{I}_{120} \Rightarrow M^{3} \simeq \Sigma(2,3,5)
\end{aligned}
$$

(0) Find GW dual X_{Γ}, if any.

(2) Find spectral curve dual \mathcal{S}_{Γ}, if any.
© Prove that large N duality, mirror symmetry, and the topological recursion all hold true.
$S^{3} \longrightarrow M^{3}$
Take M^{3} a Clifford-Klein 3-manifold:

$$
\exists g \mid \operatorname{Ric}(g)>0 \Leftrightarrow M^{3} \simeq S^{3} / \Gamma, \Gamma \subset S O(4) .
$$

Examples:

$$
\begin{aligned}
& \text { Type } A_{1}: \Gamma=\mathbb{Z} / 2 \Rightarrow M^{3} \simeq \mathbb{R} P^{3} \\
& \text { Type } E_{8}: \Gamma=\mathbb{I}_{120} \Rightarrow M^{3} \simeq \Sigma(2,3,5)
\end{aligned}
$$

(1) Find GW dual X_{Γ}, if any.
(3) Find spectral curve dual \mathcal{S}_{Γ}, if any.
(3) Prove that large N duality, mirror symmetry, and the topological recursion all hold true.
$S^{3} \longrightarrow M^{3}$
Take M^{3} a Clifford-Klein 3-manifold:

$$
\exists g \mid \operatorname{Ric}(g)>0 \Leftrightarrow M^{3} \simeq S^{3} / \Gamma, \Gamma \subset S O(4) .
$$

Examples:

$$
\begin{aligned}
& \text { Type } A_{1}: \Gamma=\mathbb{Z} / 2 \Rightarrow M^{3} \simeq \mathbb{R} P^{3} \\
& \text { Type } E_{8}: \Gamma=\mathbb{I}_{120} \Rightarrow M^{3} \simeq \Sigma(2,3,5)
\end{aligned}
$$

(1) Find GW dual X_{Γ}, if any.
(2) Find spectral curve dual \mathcal{S}_{Γ}, if any.

(3) Prove that large N duality, mirror symmetry, and the topological recursion all hold true.

$S^{3} \longrightarrow M^{3}$
Take M^{3} a Clifford-Klein 3-manifold:

$$
\exists g \mid \operatorname{Ric}(g)>0 \Leftrightarrow M^{3} \simeq S^{3} / \Gamma, \Gamma \subset S O(4) .
$$

Examples:

$$
\begin{aligned}
& \text { Type } A_{1}: \Gamma=\mathbb{Z} / 2 \Rightarrow M^{3} \simeq \mathbb{R} P^{3} \\
& \text { Type } E_{8}: \Gamma=\mathbb{I}_{120} \Rightarrow M^{3} \simeq \Sigma(2,3,5)
\end{aligned}
$$

(1) Find GW dual X_{Γ}, if any.
(2) Find spectral curve dual \mathcal{S}_{Γ}, if any.
(3) Prove that large N duality, mirror symmetry, and the topological recursion all hold true.

The quest

$U(N)$ CS on $S_{\text {「 }}$

large N ?
A-model on...?

B-model on...?

$S^{3} \longrightarrow M^{3}: A$-side

Geometric transition:

$S^{3} \longrightarrow M^{3}: A$-side

Geometric transition:

$S^{3} \longrightarrow M^{3}: A$-side

Remarks [many things are well defined]:

- 「 action is fiberwise
(2) X_{Γ} supports a \mathbb{C}^{\star}-Calabi-Yau action with compact fixed loci
(0) \exists canonical Lagrangians $\mathcal{L}_{\Gamma} \subset X_{\Gamma}$ (\Rightarrow open (orbifold) GW invariants)
[Katz-Liu '01, AB-Cavalieri ' 10]
(0) orientifold constructions carry through $(S O(N) / S p(N))$
[Sinha-Vafa '00]
By (2) above, for $\Gamma \neq \mathbb{Z} / p \mathbb{Z}, X_{\Gamma}$ is non toric \Rightarrow no Hori-lqbal-Vafa, no obvious mirror spectral curve

Duality web

$U(N) C S$ on S_{Γ} $\xrightarrow{\text { large } N ?} A$-model on X_{Γ}

B-model on...?
$\mathcal{N}=1\left(\mathcal{G}_{\Gamma}, \emptyset\right)$
SYM in $d=5$

Duality web

B-model on
relativistic $\widehat{\mathcal{G}}_{\Gamma}$-Toda

$\mathcal{G}_{\Gamma} / \widehat{\mathcal{G}_{\Gamma}}$-relativistic Toda

- Phase space: $\mathcal{P}_{\Gamma} \simeq\left(\mathbb{C}^{\star}\right)_{x}^{r_{\Gamma}} \times\left(\mathbb{C}^{\star}\right)_{y}^{r_{\Gamma}},\left\{x_{i}, y_{j}\right\}=C_{i j}^{\Gamma} x_{i} y_{j}$
- Dynamics: $\mathcal{C}:(\mathcal{P},\{\},) \rightarrow\left(\mathcal{G}_{\Gamma} / \mathcal{T}_{\mathcal{F}},\{,\}_{\text {DJov }}\right)$
$\left\{\mathcal{L}^{*} H_{i}, \mathcal{L}^{*} H_{j}\right\}=0, \quad H_{i} \in \mathcal{O}\left(\mathcal{G}_{\Gamma}\right)^{\mathcal{G}}$.
- Type A: non-periodic/periodic Ruijsenaars system
[Fock-Marshakov '97-'14, Williams '12, Kruglinskaya-Marshakov '14]

$\mathcal{G}_{\Gamma} / \widehat{\mathcal{G}_{\Gamma}}$ relativistic Toda

- Phase space: $\mathcal{P}_{\Gamma} \simeq\left(\mathbb{C}^{\star}\right)_{x}^{r_{\Gamma}} \times\left(\mathbb{C}^{\star}\right)_{y}^{r_{\Gamma}},\left\{x_{i}, y_{j}\right\}=C_{i j}^{\Gamma} x_{i} y_{j}$
- Dynamics: $\mathcal{L}:(\mathcal{P},\{\},) \rightarrow\left(\mathcal{G}_{\Gamma} / \mathcal{T}_{\Gamma},\{,\}_{\text {DJov }}\right)$ $\left\{\mathcal{L}^{*} H_{i}, \mathcal{L}^{*} H_{j}\right\}=0, \quad H_{i} \in \mathcal{O}\left(\mathcal{G}_{\Gamma}\right)^{\mathcal{G}_{\Gamma}}$
- Type A: non-periodic/periodio Ruijsenaars system
[Fock-Marshakov '97-'14, Williams '12, Kruglinskaya-Marshakov '14]

$\mathcal{G}_{\Gamma} / \widehat{\mathcal{G}_{\Gamma}}$ relativistic Toda

- Phase space: $\mathcal{P}_{\Gamma} \simeq\left(\mathbb{C}^{\star}\right)_{x}^{r_{\Gamma}} \times\left(\mathbb{C}^{\star}\right)_{y}^{r_{\Gamma}},\left\{x_{i}, y_{j}\right\}=C_{i j}^{\Gamma} x_{i} y_{j}$
- Dynamics: $\mathcal{L}:(\mathcal{P},\{\},) \rightarrow\left(\mathcal{G}_{\Gamma} / \mathcal{T}_{\Gamma},\{,\}_{\text {DJov }}\right)$ $\left\{\mathcal{L}^{*} H_{i}, \mathcal{L}^{*} H_{j}\right\}=0, \quad H_{i} \in \mathcal{O}\left(\mathcal{G}_{\Gamma}\right)^{\mathcal{G}_{\Gamma}}$
- Type A: non-periodic/periodio Ruijsenaars system
[Fock-Marshakov '97-'14, Williams '12, Kruglinskaya-Marshakov '14]

$\mathcal{G}_{\Gamma} / \widehat{\mathcal{G}_{\Gamma}}$ relativistic Toda

- Phase space: $\mathcal{P}_{\Gamma} \simeq\left(\mathbb{C}^{\star}\right)_{x}^{r_{\Gamma}} \times\left(\mathbb{C}^{\star}\right)_{y}^{r_{\Gamma}},\left\{x_{i}, y_{j}\right\}=C_{i j}^{\Gamma} x_{i} y_{j}$
- Dynamics: $\mathcal{L}:(\mathcal{P},\{\},) \rightarrow\left(\mathcal{G}_{\Gamma} / \mathcal{T}_{\Gamma},\{,\}_{\text {DJOV }}\right)$ $\left\{\mathcal{L}^{*} H_{i}, \mathcal{L}^{*} H_{j}\right\}=0, \quad H_{i} \in \mathcal{O}\left(\mathcal{G}_{\Gamma}\right)^{\mathcal{G}_{\Gamma}}$.
- Type A: non-periodic/periodic Ruijsenaars system
[Fock-Marshakov '97-'14, Williams '12, Kruglinskaya-Marshakov '14]

$\mathcal{G}_{\Gamma} / \widehat{\mathcal{G}_{\Gamma}}$ relativistic Toda

- Phase space: $\mathcal{P}_{\Gamma} \simeq\left(\mathbb{C}^{\star}\right)_{x}^{r_{\Gamma}} \times\left(\mathbb{C}^{\star}\right)_{y}^{r_{\Gamma}},\left\{x_{i}, y_{j}\right\}=C_{i j}^{\Gamma} x_{i} y_{j}$
- Dynamics: $\mathcal{L}:(\mathcal{P},\{\},) \rightarrow\left(\mathcal{G}_{\Gamma} / \mathcal{T}_{\Gamma},\{,\}_{\text {DJOV }}\right)$ $\left\{\mathcal{L}^{*} H_{i}, \mathcal{L}^{*} H_{j}\right\}=0, \quad H_{i} \in \mathcal{O}\left(\mathcal{G}_{\Gamma}\right)^{\mathcal{G}_{\Gamma}}$.
- Type A: non-periodic/periodic Ruijsenaars system
[Fock-Marshakov '97-'14, Williams '12, Kruglinskaya-Marshakov '14]

$\mathcal{G}_{\Gamma} / \widehat{\mathcal{G}_{\Gamma}}$-relativistic Toda

- Phase space: $\mathcal{P}_{\Gamma} \simeq\left(\mathbb{C}^{\star}\right)_{x}^{r_{\Gamma}} \times\left(\mathbb{C}^{\star}\right)_{y}^{r_{\Gamma}},\left\{x_{i}, y_{j}\right\}=C_{i j}^{\Gamma} x_{i} y_{j}$
- Dynamics: $\mathcal{L}:(\mathcal{P},\{\},) \rightarrow\left(\mathcal{G}_{\Gamma} / \mathcal{T}_{\Gamma},\{,\}_{\text {DJOV }}\right)$ $\left\{\mathcal{L}^{*} H_{i}, \mathcal{L}^{*} H_{j}\right\}=0, \quad H_{i} \in \mathcal{O}\left(\mathcal{G}_{\Gamma}\right)^{\mathcal{G}_{\Gamma}}$.
- Type A: non-periodic/periodic Ruijsenaars system
[Fock-Marshakov '97-'14, Williams '12, Kruglinskaya-Marshakov '14]

Relativistic Toda「 spectral curves

Toda $_{\Gamma}=\left(\mathcal{C}_{\Gamma}, \mathbb{L}, \Omega_{1}, \Omega_{2}\right)$, with:$\rho \neq 1 \in \operatorname{Rep}\left(\mathcal{G}_{\Gamma}\right):$
$\mathcal{P}_{\Gamma, \rho} \triangleq \operatorname{det}_{\rho}(\mu \mathrm{id}-\mathcal{L}(\lambda)) \in \mathbb{Z}[\mu]\left[\operatorname{Tr}_{\omega_{1}} \mathcal{L}(\lambda), \ldots, \operatorname{Tr}_{\omega_{\omega_{\Gamma}}} \mathcal{L}(\lambda)\right]$.
(2) $\mathcal{C}_{\Gamma}=\overline{\left\{\mathcal{P}_{\Gamma \rho}=0\right\}}$;
(3) \exists a canonical correspondence on \mathcal{C}_{Γ}, lifting to projectors $\pi_{1}: \operatorname{Pic}^{(0)}\left(\mathcal{C}_{\Gamma}\right) \rightarrow \mathbb{T}_{\Gamma}$ and $\pi_{2}: H_{1}\left(\mathcal{C}_{\Gamma}, \mathbb{Z}\right) \rightarrow \mathbb{L}$; motion linearises on \mathbb{T}_{Γ}.

[Kanev '87, Donagi '88, McDaniel-Smolinsky '92-97, Martinec-Warner '95]

(a) Spectral differentials: $\left(\Omega_{1}, \Omega_{2}\right)=(\mathrm{d} \log \lambda, \mathrm{d} \log \mu)$.
[Krichever-Phong '96-'97, D'Hoker-Krichever-Phong '02]
(5) Also: $\operatorname{Tr}_{\omega_{i}} \mathcal{L}(\lambda)=u_{i}+\delta_{i, \bar{i}}\left(\lambda+\frac{\mathfrak{C}}{\lambda}\right), \mathcal{C}=$ Casimir. Problem completely solved by determining $\wedge^{n} \rho=\mathfrak{p}_{n, \Gamma}\left(\rho_{\omega_{1}}, \ldots, \rho_{\omega_{\Gamma_{\Gamma}}}\right) \in \operatorname{Rep}\left(\mathcal{G}_{\Gamma}\right)$.

Relativistic Toda「 spectral curves

Toda $_{\Gamma}=\left(\mathcal{C}_{\Gamma}, \mathbb{L}, \Omega_{1}, \Omega_{2}\right)$, with:$\rho \neq 1 \in \operatorname{Rep}\left(\mathcal{G}_{\Gamma}\right):$
$\mathcal{P}_{\Gamma, \rho} \triangleq \operatorname{det}_{\rho}(\mu \mathrm{id}-\mathcal{L}(\lambda)) \in \mathbb{Z}[\mu]\left[\operatorname{Tr}_{\omega_{1}} \mathcal{L}(\lambda), \ldots, \operatorname{Tr}_{\omega_{\omega_{\Gamma}}} \mathcal{L}(\lambda)\right]$.
(2) $\mathcal{C}_{\Gamma}=\overline{\left\{\mathcal{P}_{\Gamma \rho}=0\right\}}$;
(3) \exists a canonical correspondence on \mathcal{C}_{Γ}, lifting to projectors $\pi_{1}: \operatorname{Pic}^{(0)}\left(\mathcal{C}_{\Gamma}\right) \rightarrow \mathbb{T}_{\Gamma}$ and $\pi_{2}: H_{1}\left(\mathcal{C}_{\Gamma}, \mathbb{Z}\right) \rightarrow \mathbb{L}$; motion linearises on \mathbb{T}_{Γ}.

[Kanev '87, Donagi '88, McDaniel-Smolinsky '92-97, Martinec-Warner '95]

(a) Spectral differentials: $\left(\Omega_{1}, \Omega_{2}\right)=(\mathrm{d} \log \lambda, \mathrm{d} \log \mu)$.
[Krichever-Phong '96-'97, D'Hoker-Krichever-Phong '02]
(5) Also: $\operatorname{Tr}_{\omega_{i}} \mathcal{L}(\lambda)=u_{i}+\delta_{i, \bar{i}}\left(\lambda+\frac{\mathfrak{C}}{\lambda}\right), \mathcal{C}=$ Casimir. Problem completely solved by determining $\wedge^{n} \rho=\mathfrak{p}_{n, \Gamma}\left(\rho_{\omega_{1}}, \ldots, \rho_{\omega_{\Gamma_{\Gamma}}}\right) \in \operatorname{Rep}\left(\mathcal{G}_{\Gamma}\right)$.

Relativistic Todaг spectral curves

Toda $_{\Gamma}=\left(\mathcal{C}_{\Gamma}, \mathbb{L}, \Omega_{1}, \Omega_{2}\right)$, with:
(1) $\rho \neq 1 \in \operatorname{Rep}\left(\mathcal{G}_{\Gamma}\right)$:
$\mathcal{P}_{\Gamma, \rho} \triangleq \operatorname{det}_{\rho}(\mu \mathrm{id}-\mathcal{L}(\lambda)) \in \mathbb{Z}[\mu]\left[\operatorname{Tr}_{\omega_{1}} \mathcal{L}(\lambda), \ldots, \operatorname{Tr}_{\omega_{r_{\Gamma}}} \mathcal{L}(\lambda)\right]$.
(2) $\mathcal{C}_{\Gamma}=\overline{\left\{\mathcal{P}_{\Gamma, \rho}=0\right\} ;}$
(3) \exists a canonical correspondence on \mathcal{C}_{Γ}, lifting to projectors
$\pi_{1}: \operatorname{Pic}^{(0)}\left(\mathcal{C}_{\Gamma}\right) \rightarrow \mathbb{T}_{\Gamma}$ and $\pi_{2}: H_{1}\left(\mathcal{C}_{\Gamma}, \mathbb{Z}\right) \rightarrow \mathbb{L}$; motion linearises on
[Kanev '87, Donagi '88, McDaniel-Smolinsky '92-97, Martinec-Warner '95]
(C) Spectral differentials: $\left(\Omega_{1}, \Omega_{2}\right)=(\mathrm{d} \log \lambda, \mathrm{d} \log \mu)$.
(5) Also: $\operatorname{Tr}_{\omega_{i} \mathcal{L}} \mathcal{L}(\lambda)=u_{i}+\delta_{i, \bar{i}}\left(\lambda+\frac{\mathfrak{C}}{\lambda}\right), \mathcal{C}=$ Casimir. Problem completely solved by determining $\wedge^{n} \rho=\mathfrak{p}_{n, \Gamma}\left(\rho_{\omega_{1}}, \ldots, \rho_{\omega_{\Gamma_{\Gamma}}}\right) \in \operatorname{Rep}\left(\mathcal{G}_{\Gamma}\right)$.

Relativistic Todaг spectral curves

Toda $_{\Gamma}=\left(\mathcal{C}_{\Gamma}, \mathbb{L}, \Omega_{1}, \Omega_{2}\right)$, with:
(1) $\rho \neq 1 \in \operatorname{Rep}\left(\mathcal{G}_{\Gamma}\right)$:
$\mathcal{P}_{\Gamma, \rho} \triangleq \operatorname{det}_{\rho}(\mu \mathrm{id}-\mathcal{L}(\lambda)) \in \mathbb{Z}[\mu]\left[\operatorname{Tr}_{\omega_{1}} \mathcal{L}(\lambda), \ldots, \operatorname{Tr}_{\omega_{r_{\Gamma}}} \mathcal{L}(\lambda)\right]$.
(2) $\mathcal{C}_{\Gamma}=\overline{\left\{\mathcal{P}_{\Gamma, \rho}=0\right\} ;}$
(3) \exists a canonical correspondence on \mathcal{C}_{Γ}, lifting to projectors
$\pi_{1}: \operatorname{Pic}^{(0)}\left(\mathcal{C}_{\Gamma}\right) \rightarrow \mathbb{T}_{\Gamma}$ and $\pi_{2}: H_{1}\left(\mathcal{C}_{\Gamma}, \mathbb{Z}\right) \rightarrow \mathbb{L}$; motion linearises on
[Kanev '87, Donagi '88, McDaniel-Smolinsky '92-97, Martinec-Warner '95]
(C) Spectral differentials: $\left(\Omega_{1}, \Omega_{2}\right)=(\mathrm{d} \log \lambda, \mathrm{d} \log \mu)$.
(5) Also: $\operatorname{Tr}_{\omega_{i} \mathcal{L}} \mathcal{L}(\lambda)=u_{i}+\delta_{i, \bar{i}}\left(\lambda+\frac{\mathfrak{C}}{\lambda}\right), \mathcal{C}=$ Casimir. Problem completely solved by determining $\wedge^{n} \rho=\mathfrak{p}_{n, \Gamma}\left(\rho_{\omega_{1}}, \ldots, \rho_{\omega_{\Gamma_{\Gamma}}}\right) \in \operatorname{Rep}\left(\mathcal{G}_{\Gamma}\right)$.

Relativistic Todaг spectral curves

Toda $_{\Gamma}=\left(\mathcal{C}_{\Gamma}, \mathbb{L}, \Omega_{1}, \Omega_{2}\right)$, with:
(1) $\rho \neq 1 \in \operatorname{Rep}\left(\mathcal{G}_{\Gamma}\right)$:
$\mathcal{P}_{\Gamma, \rho} \triangleq \operatorname{det}_{\rho}(\mu \mathrm{id}-\mathcal{L}(\lambda)) \in \mathbb{Z}[\mu]\left[\operatorname{Tr}_{\omega_{1}} \mathcal{L}(\lambda), \ldots, \operatorname{Tr}_{\omega_{r_{\Gamma}}} \mathcal{L}(\lambda)\right]$.
(2) $\mathcal{C}_{\Gamma}=\overline{\left\{\mathcal{P}_{\Gamma, \rho}=0\right\}}$;
(3) \exists a canonical correspondence on \mathcal{C}_{Γ}, lifting to projectors
$\pi_{1}: \operatorname{Pic}^{(0)}\left(\mathcal{C}_{\Gamma}\right) \rightarrow \mathbb{T}_{\Gamma}$ and $\pi_{2}: H_{1}\left(\mathcal{C}_{\Gamma}, \mathbb{Z}\right) \rightarrow \mathbb{L}$; motion linearises on
\mathbb{T}_{Γ}.
[Kanev '87, Donagi '88, McDaniel-Smolinsky '92-97, Martinec-Warner '95]
(a) Spectral differentials: $\left(\Omega_{1}, \Omega_{2}\right)=(\mathrm{d} \log \lambda, \mathrm{d} \log \mu)$.
(6) Also: $\operatorname{Tr}_{\omega_{i} \mathcal{L}} \mathcal{L}(\lambda)=u_{i}+\delta_{i, \bar{i}}\left(\lambda+\frac{\mathfrak{C}}{\lambda}\right), \mathcal{C}=$ Casimir. Problem completely solved by determining $\wedge^{n} \rho=\mathfrak{p}_{n, \Gamma}\left(\rho_{\omega_{1}}, \ldots, \rho_{\omega_{r_{\Gamma}}}\right) \in \operatorname{Rep}\left(\mathcal{G}_{\Gamma}\right)$.

Relativistic Todar spectral curves

Toda $_{\Gamma}=\left(\mathcal{C}_{\Gamma}, \mathbb{L}, \Omega_{1}, \Omega_{2}\right)$, with:
(1) $\rho \neq 1 \in \operatorname{Rep}\left(\mathcal{G}_{\Gamma}\right):$
$\mathcal{P}_{\Gamma, \rho} \triangleq \operatorname{det}_{\rho}(\mu \mathrm{id}-\mathcal{L}(\lambda)) \in \mathbb{Z}[\mu]\left[\operatorname{Tr}_{\omega_{1}} \mathcal{L}(\lambda), \ldots, \operatorname{Tr}_{\omega_{\Gamma_{\Gamma}}} \mathcal{L}(\lambda)\right]$.
(2) $\mathcal{C}_{\Gamma}=\overline{\left\{\mathcal{P}_{\Gamma, \rho}=0\right\}}$;
(3) \exists a canonical correspondence on \mathcal{C}_{Γ}, lifting to projectors
$\pi_{1}: \operatorname{Pic}^{(0)}\left(\mathcal{C}_{\Gamma}\right) \rightarrow \mathbb{T}_{\Gamma}$ and $\pi_{2}: H_{1}\left(\mathcal{C}_{\Gamma}, \mathbb{Z}\right) \rightarrow \mathbb{L}$; motion linearises on \mathbb{T}_{Γ}.
[Kanev '87, Donagi '88, McDaniel-Smolinsky '92-97, Martinec-Warner '95]
(6) Also: $\operatorname{Tr}_{\omega_{i} \mathcal{L}} \mathcal{L}(\lambda)=u_{i}+\delta_{i, \bar{i}}\left(\lambda+\frac{\mathfrak{C}}{\lambda}\right), \mathcal{C}=$ Casimir. Problem completely
solved by determining $\wedge^{n} \rho=\mathfrak{p}_{n, \Gamma}\left(\rho_{\omega_{1}}, \ldots, \rho_{\omega_{\Gamma_{\Gamma}}}\right) \in \operatorname{Rep}\left(\mathcal{G}_{\Gamma}\right)$.

Relativistic Todar spectral curves

Toda $_{\Gamma}=\left(\mathcal{C}_{\Gamma}, \mathbb{L}, \Omega_{1}, \Omega_{2}\right)$, with:
(1) $\rho \neq 1 \in \operatorname{Rep}\left(\mathcal{G}_{\Gamma}\right):$
$\mathcal{P}_{\Gamma, \rho} \triangleq \operatorname{det}_{\rho}(\mu \mathrm{id}-\mathcal{L}(\lambda)) \in \mathbb{Z}[\mu]\left[\operatorname{Tr}_{\omega_{1}} \mathcal{L}(\lambda), \ldots, \operatorname{Tr}_{\omega_{\Gamma_{\Gamma}}} \mathcal{L}(\lambda)\right]$.
(2) $\mathcal{C}_{\Gamma}=\overline{\left\{\mathcal{P}_{\Gamma, \rho}=0\right\}}$;
(3) \exists a canonical correspondence on \mathcal{C}_{Γ}, lifting to projectors
$\pi_{1}: \operatorname{Pic}^{(0)}\left(\mathcal{C}_{\Gamma}\right) \rightarrow \mathbb{T}_{\Gamma}$ and $\pi_{2}: H_{1}\left(\mathcal{C}_{\Gamma}, \mathbb{Z}\right) \rightarrow \mathbb{L}$; motion linearises on \mathbb{T}_{Γ}.
[Kanev '87, Donagi '88, McDaniel-Smolinsky '92-97, Martinec-Warner '95]
(6) Also: $\operatorname{Tr}_{\omega_{i} \mathcal{L}} \mathcal{L}(\lambda)=u_{i}+\delta_{i, \bar{i}}\left(\lambda+\frac{\mathfrak{C}}{\lambda}\right), \mathcal{C}=$ Casimir. Problem completely
solved by determining $\wedge^{n} \rho=\mathfrak{p}_{n, \Gamma}\left(\rho_{\omega_{1}}, \ldots, \rho_{\omega_{\Gamma_{\Gamma}}}\right) \in \operatorname{Rep}\left(\mathcal{G}_{\Gamma}\right)$.

Relativistic Todar spectral curves

Toda $_{\Gamma}=\left(\mathcal{C}_{\Gamma}, \mathbb{L}, \Omega_{1}, \Omega_{2}\right)$, with:
(1) $\rho \neq 1 \in \operatorname{Rep}\left(\mathcal{G}_{\Gamma}\right):$
$\mathcal{P}_{\Gamma, \rho} \triangleq \operatorname{det}_{\rho}(\mu \mathrm{id}-\mathcal{L}(\lambda)) \in \mathbb{Z}[\mu]\left[\operatorname{Tr}_{\omega_{1}} \mathcal{L}(\lambda), \ldots, \operatorname{Tr}_{\omega_{r_{\Gamma}}} \mathcal{L}(\lambda)\right]$.
(2) $\mathcal{C}_{\Gamma}=\overline{\left\{\mathcal{P}_{\Gamma, \rho}=0\right\}}$;
(3) \exists a canonical correspondence on \mathcal{C}_{Γ}, lifting to projectors
$\pi_{1}: \operatorname{Pic}^{(0)}\left(\mathcal{C}_{\Gamma}\right) \rightarrow \mathbb{T}_{\Gamma}$ and $\pi_{2}: H_{1}\left(\mathcal{C}_{\Gamma}, \mathbb{Z}\right) \rightarrow \mathbb{L}$; motion linearises on \mathbb{T}_{Γ}.
[Kanev '87, Donagi '88, McDaniel-Smolinsky '92-97, Martinec-Warner '95]
(4) Spectral differentials: $\left(\Omega_{1}, \Omega_{2}\right)=(\mathrm{d} \log \lambda, \mathrm{d} \log \mu)$.
[Krichever-Phong '96-'97, D'Hoker-Krichever-Phong '02]

solved by determining $\wedge^{n} \rho=\mathfrak{p}_{n, \Gamma}\left(\rho_{\omega_{1}}, \ldots, \rho_{\omega_{r_{\Gamma}}}\right) \in \operatorname{Rep}\left(\mathcal{G}_{\Gamma}\right)$.

Relativistic Todar spectral curves

Toda $_{\Gamma}=\left(\mathcal{C}_{\Gamma}, \mathbb{L}, \Omega_{1}, \Omega_{2}\right)$, with:
(1) $\rho \neq 1 \in \operatorname{Rep}\left(\mathcal{G}_{\Gamma}\right):$
$\mathcal{P}_{\Gamma, \rho} \triangleq \operatorname{det}_{\rho}(\mu \mathrm{id}-\mathcal{L}(\lambda)) \in \mathbb{Z}[\mu]\left[\operatorname{Tr}_{\omega_{1}} \mathcal{L}(\lambda), \ldots, \operatorname{Tr}_{\omega_{r_{\Gamma}}} \mathcal{L}(\lambda)\right]$.
(2) $\mathcal{C}_{\Gamma}=\overline{\left\{\mathcal{P}_{\Gamma, \rho}=0\right\}}$;
(3) \exists a canonical correspondence on \mathcal{C}_{Γ}, lifting to projectors
$\pi_{1}: \operatorname{Pic}^{(0)}\left(\mathcal{C}_{\Gamma}\right) \rightarrow \mathbb{T}_{\Gamma}$ and $\pi_{2}: H_{1}\left(\mathcal{C}_{\Gamma}, \mathbb{Z}\right) \rightarrow \mathbb{L}$; motion linearises on \mathbb{T}_{Γ}.
[Kanev '87, Donagi '88, McDaniel-Smolinsky '92-97, Martinec-Warner '95]
(4) Spectral differentials: $\left(\Omega_{1}, \Omega_{2}\right)=(\mathrm{d} \log \lambda, \mathrm{d} \log \mu)$.
[Krichever-Phong '96-'97, D'Hoker-Krichever-Phong '02]

solved by determining $\wedge^{n} \rho=\mathfrak{p}_{n, \Gamma}\left(\rho_{\omega_{1}}, \ldots, \rho_{\omega_{r_{\Gamma}}}\right) \in \operatorname{Rep}\left(\mathcal{G}_{\Gamma}\right)$.

Relativistic Todar spectral curves

Toda $_{\Gamma}=\left(\mathcal{C}_{\Gamma}, \mathbb{L}, \Omega_{1}, \Omega_{2}\right)$, with:
(1) $\rho \neq 1 \in \operatorname{Rep}\left(\mathcal{G}_{\Gamma}\right):$
$\mathcal{P}_{\Gamma, \rho} \triangleq \operatorname{det}_{\rho}(\mu \mathrm{id}-\mathcal{L}(\lambda)) \in \mathbb{Z}[\mu]\left[\operatorname{Tr}_{\omega_{1}} \mathcal{L}(\lambda), \ldots, \operatorname{Tr}_{\omega_{r_{\Gamma}}} \mathcal{L}(\lambda)\right]$.
(2) $\mathcal{C}_{\Gamma}=\overline{\left\{\mathcal{P}_{\Gamma, \rho}=0\right\}}$;
(3) \exists a canonical correspondence on \mathcal{C}_{Γ}, lifting to projectors
$\pi_{1}: \operatorname{Pic}^{(0)}\left(\mathcal{C}_{\Gamma}\right) \rightarrow \mathbb{T}_{\Gamma}$ and $\pi_{2}: H_{1}\left(\mathcal{C}_{\Gamma}, \mathbb{Z}\right) \rightarrow \mathbb{L}$; motion linearises on \mathbb{T}_{Γ}.
[Kanev '87, Donagi '88, McDaniel-Smolinsky '92-97, Martinec-Warner '95]
(4) Spectral differentials: $\left(\Omega_{1}, \Omega_{2}\right)=(\mathrm{d} \log \lambda, \mathrm{d} \log \mu)$.
[Krichever-Phong '96-'97, D'Hoker-Krichever-Phong '02]
(5) Also: $\operatorname{Tr}_{\omega_{i}} \mathcal{L}(\lambda)=u_{i}+\delta_{i, \bar{i}}\left(\lambda+\frac{\mathfrak{C}}{\lambda}\right), \mathcal{C}=$ Casimir. Problem completely solved by determining $\wedge^{n} \rho=\mathfrak{p}_{n, \Gamma}\left(\rho_{\omega_{1}}, \ldots, \rho_{\omega_{r_{\Gamma}}}\right) \in \operatorname{Rep}\left(\mathcal{G}_{\Gamma}\right)$.

$A D E_{6,7}$

Problem is trivial in type $A_{n}(\rho=\square)$, a back-of-the-envelope calculation for type $D_{n}\left(\rho=\left(\mathbf{2}_{v}\right)\right)$, and computable in reasonably short time on Mathematica for ($E_{6}, 27$) (runtime: 30mins) and $\left(E_{7}, 56\right)$ (1/2 day).

Todaг spectral curves: type A

Todaг spectral curves: type D

Todar spectral curves: type E_{6}

Todar spectral curves: type E_{7}

- $\left(E_{8}, \rho=\mathfrak{e}_{8}\right)$ is completely unwieldy at face value, but it's related to the Poincaré sphere, it's immoral to leave anyone behind, and particularly frustrating when the most exceptional case is kept untreated.
- \exists there's a semi-numerical way to break up the computation into a big number of smaller pieces of at most the size of the E_{7} problem.
- Runtime grand total: 110 months, however code is easily "parallelisable".
With $N \simeq 75$ cores at once, this was reduced to about 1.5 months on a couple of small departmental clusters; see
tiny.cc/E8Char
- $\left(E_{8}, \rho=\mathfrak{e}_{8}\right)$ is completely unwieldy at face value, but it's related to the Poincaré sphere, it's immoral to leave anyone behind, and particularly frustrating when the most exceptional case is kept untreated.
- \exists there's a semi-numerical way to break up the computation into a big number of smaller pieces of at most the size of the E_{7} problem.
- Runtime grand total: 110 months, however code is easily "parallelisable"
With $N \simeq 75$ cores at once, this was reduced to about 1.5 months on a couple of small departmental clusters; see
tiny.cc/E8Char
- $\left(E_{8}, \rho=\mathfrak{e}_{8}\right)$ is completely unwieldy at face value, but it's related to the Poincaré sphere, it's immoral to leave anyone behind, and particularly frustrating when the most exceptional case is kept untreated.
- \exists there's a semi-numerical way to break up the computation into a big number of smaller pieces of at most the size of the E_{7} problem.
- Runtime grand total: 110 months, however code is easily "parallelisable".
With $N \simeq 75$ cores at once, this was reduced to about 1.5 months on a couple of small departmental clusters; see
tiny.cc/E8Char

Toda「 spectral curves: type E_{8}

At the end of the day...

Theorem (Borot-AB $\left.\left(A D E_{6,7}\right), \mathrm{AB}\left(E_{8}\right)\right)$

The B-model Gopakumar-Vafa duality holds in all genera for Clifford-Klein 3-manifolds in a reducible flat background - and for them alone.

At the end of the day...

SOTP:

- CS on Seifert manifolds reduces to a trigonometric (multi-)eigenvalue model
- $\exists \mathcal{P}_{\mathrm{CS}} \in \mathbb{C}[x, y] \mid \mathcal{P}_{\mathrm{CS}}\left(z, \omega_{0,1}^{S^{3} / \Gamma}(z)\right)=0$
[AB-Eynard-Mariño '11, Borot-Eynard '14, Borot-AB '15, AB '17]
- $\mathcal{P}_{\mathrm{CS}}=\left.\operatorname{det}(\mu-\mathcal{L}(\lambda))\right|_{u(t)} \Rightarrow \omega_{0,1}^{S^{3} / \Gamma}=\mathrm{CEO}_{0,1}$ [Todar]
[Borot-AB '15, AB '17]
- $\omega_{0,2}^{S^{3} / \Gamma}=\mathrm{CEO}_{0,2}$ [Todar${ }^{\text {[}}$]
- \Rightarrow all genus/colorings
- Extra sphaericos nulla salus

At the end of the day...

SOTP:

- CS on Seifert manifolds reduces to a trigonometric (multi-)eigenvalue model
- $\exists \mathcal{P}_{\mathrm{CS}} \in \mathbb{C}[x, y] \mid \mathcal{P}_{\mathrm{CS}}\left(z, \omega_{0,1}^{S^{3} / \Gamma}(z)\right)=0$
- $\mathcal{P}_{\mathrm{CS}}=\left.\operatorname{det}(\mu-\mathcal{L}(\lambda))\right|_{u(t)} \Rightarrow \omega_{0,1}^{S^{3} / \Gamma}=\mathrm{CEO}_{0,1}$ [Todar]
- $\omega_{0,2}^{S^{3} / \Gamma}=\mathrm{CEO}_{0,2}$ [Todaг]
- \Rightarrow all genus/colorings
- Extra sphaericos nulla salus

At the end of the day...

SOTP:

- CS on Seifert manifolds reduces to a trigonometric (multi-)eigenvalue model
- $\exists \mathcal{P}_{\mathrm{CS}} \in \mathbb{C}[x, y] \mid \mathcal{P}_{\mathrm{CS}}\left(z, \omega_{0,1}^{S^{3} / \Gamma}(z)\right)=0$
- $\mathcal{P}_{\mathrm{CS}}=\left.\operatorname{det}(\mu-\mathcal{L}(\lambda))\right|_{u(t)} \Rightarrow \omega_{0,1}^{S^{3} / \Gamma}=\mathrm{CEO}_{0,1}$ [Todar]
- $\omega_{0,2}^{S^{3} / \Gamma}=\mathrm{CEO}_{0,2}$ [Todaг]
- \Rightarrow all genus/colorings
- Extra sphaericos nulla salus

At the end of the day...

SOTP:

- CS on Seifert manifolds reduces to a trigonometric (multi-)eigenvalue model
- $\exists \mathcal{P}_{\mathrm{CS}} \in \mathbb{C}[x, y] \mid \mathcal{P}_{\mathrm{CS}}\left(z, \omega_{0,1}^{S^{3} / \Gamma}(z)\right)=0$
[AB-Eynard-Mariño '11, Borot-Eynard '14, Borot-AB '15, AB '17]
- $\mathcal{P}_{\mathrm{CS}}=\left.\operatorname{det}(\mu-\mathcal{L}(\lambda))\right|_{u(t)} \Rightarrow \omega_{0,1}^{S^{3} / \Gamma}=\mathrm{CEO}_{0,1}[$ Todar $]$
- $\omega_{0,2}^{S^{3} / \Gamma}=\mathrm{CEO}_{0,2}$ [Todar]
- \Rightarrow all genus/colorings
- Extra sphaericos nulla salus

At the end of the day...

SOTP:

- CS on Seifert manifolds reduces to a trigonometric (multi-)eigenvalue model
- $\exists \mathcal{P}_{\mathrm{CS}} \in \mathbb{C}[x, y] \mid \mathcal{P}_{\mathrm{CS}}\left(z, \omega_{0,1}^{S^{3} / \Gamma}(z)\right)=0$
[AB-Eynard-Mariño '11, Borot-Eynard '14, Borot-AB '15, AB '17]
- $\mathcal{P}_{\mathrm{CS}}=\left.\operatorname{det}(\mu-\mathcal{L}(\lambda))\right|_{u(t)} \Rightarrow \omega_{0,1}^{S^{3} / \Gamma}=\mathrm{CEO}_{0,1}[$ Todar $]$
- $\omega_{0,2}^{S^{3} / \Gamma}=\mathrm{CEO}_{0,2}$ [Todar]
- \Rightarrow all genus/colorings
- Extra sphaericos nulla salus

At the end of the day...

SOTP:

- CS on Seifert manifolds reduces to a trigonometric (multi-)eigenvalue model
- $\exists \mathcal{P}_{\mathrm{CS}} \in \mathbb{C}[x, y] \mid \mathcal{P}_{\mathrm{CS}}\left(z, \omega_{0,1}^{S^{3} / \Gamma}(z)\right)=0$
[AB-Eynard-Mariño '11, Borot-Eynard '14, Borot-AB '15, AB '17]
- $\mathcal{P}_{\mathrm{CS}}=\left.\operatorname{det}(\mu-\mathcal{L}(\lambda))\right|_{u(t)} \Rightarrow \omega_{0,1}^{S^{3} / \Gamma}=\mathrm{CEO}_{0,1}$ [Todar ${ }^{\text {] }}$]
[Borot-AB '15, AB '17]
- $\omega_{0,2}^{S^{3} / \Gamma}=\mathrm{CEO}_{0,2}$ [Todar]
- \Rightarrow all genus/colorings
- Extra sphaericos nulla salus

At the end of the day...

SOTP:

- CS on Seifert manifolds reduces to a trigonometric (multi-)eigenvalue model
- $\exists \mathcal{P}_{\mathrm{CS}} \in \mathbb{C}[x, y] \mid \mathcal{P}_{\mathrm{CS}}\left(z, \omega_{0,1}^{S^{3} / \Gamma}(z)\right)=0$
[AB-Eynard-Mariño '11, Borot-Eynard '14, Borot-AB '15, AB '17]
- $\mathcal{P}_{\mathrm{CS}}=\left.\operatorname{det}(\mu-\mathcal{L}(\lambda))\right|_{u(t)} \Rightarrow \omega_{0,1}^{S^{3} / \Gamma}=\mathrm{CEO}_{0,1}$ [Todar ${ }^{\text {] }}$]

> [Borot-AB '15, AB '17]

- $\omega_{0,2}^{S^{3} / \Gamma}=\mathrm{CEO}_{0,2}\left[\right.$ Todar ${ }^{\text {] }}$]
- \Rightarrow all genus/colorings
- Extra sphaericos nulla salus

At the end of the day...

SOTP:

- CS on Seifert manifolds reduces to a trigonometric (multi-)eigenvalue model
- $\exists \mathcal{P}_{\mathrm{CS}} \in \mathbb{C}[x, y] \mid \mathcal{P}_{\mathrm{CS}}\left(z, \omega_{0,1}^{S^{3} / \Gamma}(z)\right)=0$
[AB-Eynard-Mariño '11, Borot-Eynard '14, Borot-AB '15, AB '17]
- $\mathcal{P}_{\mathrm{CS}}=\left.\operatorname{det}(\mu-\mathcal{L}(\lambda))\right|_{u(t)} \Rightarrow \omega_{0,1}^{S^{3} / \Gamma}=\mathrm{CEO}_{0,1}$ [Todar ${ }^{\text {] }}$]

> [Borot-AB '15, AB '17]

- $\omega_{0,2}^{S^{3} / \Gamma}=\mathrm{CEO}_{0,2}\left[\right.$ Todar ${ }^{\text {] }}$]
- \Rightarrow all genus/colorings
- Extra sphaericos nulla salus

At the end of the day...

SOTP:

- CS on Seifert manifolds reduces to a trigonometric (multi-)eigenvalue model
- $\exists \mathcal{P}_{\mathrm{CS}} \in \mathbb{C}[x, y] \mid \mathcal{P}_{\mathrm{CS}}\left(z, \omega_{0,1}^{S^{3} / \Gamma}(z)\right)=0$
[AB-Eynard-Mariño '11, Borot-Eynard '14, Borot-AB '15, AB '17]
- $\mathcal{P}_{\mathrm{CS}}=\left.\operatorname{det}(\mu-\mathcal{L}(\lambda))\right|_{u(t)} \Rightarrow \omega_{0,1}^{S^{3} / \Gamma}=\mathrm{CEO}_{0,1}$ [Todar ${ }^{\text {] }}$]
[Borot-AB '15, AB '17]
- $\omega_{0,2}^{S^{3} / \Gamma}=\mathrm{CEO}_{0,2}[$ Todar $]$
- \Rightarrow all genus/colorings
- Extra sphaericos nulla salus

At the end of the day...

SOTP:

- CS on Seifert manifolds reduces to a trigonometric (multi-)eigenvalue model
- $\exists \mathcal{P}_{\mathrm{CS}} \in \mathbb{C}[x, y] \mid \mathcal{P}_{\mathrm{CS}}\left(z, \omega_{0,1}^{S^{3} / \Gamma}(z)\right)=0$
[AB-Eynard-Mariño '11, Borot-Eynard '14, Borot-AB '15, AB '17]
- $\mathcal{P}_{\mathrm{CS}}=\left.\operatorname{det}(\mu-\mathcal{L}(\lambda))\right|_{u(t)} \Rightarrow \omega_{0,1}^{S^{3} / \Gamma}=\mathrm{CEO}_{0,1}$ [Todar ${ }^{\text {] }}$]
[Borot-AB '15, AB '17]
- $\omega_{0,2}^{S^{3} / \Gamma}=\mathrm{CEO}_{0,2}[$ Todar $]$
- \Rightarrow all genus/colorings
- Extra sphaericos nulla salus

At the end of the day...

SOTP:

- CS on Seifert manifolds reduces to a trigonometric (multi-)eigenvalue model
- $\exists \mathcal{P}_{\mathrm{CS}} \in \mathbb{C}[x, y] \mid \mathcal{P}_{\mathrm{CS}}\left(z, \omega_{0,1}^{S^{3} / \Gamma}(z)\right)=0$
[AB-Eynard-Mariño '11, Borot-Eynard '14, Borot-AB '15, AB '17]
- $\mathcal{P}_{\mathrm{CS}}=\left.\operatorname{det}(\mu-\mathcal{L}(\lambda))\right|_{u(t)} \Rightarrow \omega_{0,1}^{S^{3} / \Gamma}=\mathrm{CEO}_{0,1}$ [Todar ${ }^{\text {] }}$]
[Borot-AB '15, AB '17]
- $\omega_{0,2}^{S^{3} / \Gamma}=\mathrm{CEO}_{0,2}\left[\right.$ Todar $\left.{ }^{5}\right]$
- \Rightarrow all genus/colorings
- Extra sphaericos nulla salus

Application: mirrors of DZ Frobenius manifolds

Two meaningful operations:
(1) replace $\Omega_{1}=\mathrm{d} \log \lambda \rightarrow \mathrm{d} \lambda$ (Dubrovin's almost duality)
(2) restrict to degenerate leaf $\mathfrak{C} \rightarrow 0$

Combining both: bona-fide (conformal, with flat-unit) FM structure $\mathcal{F}_{\text {Toda }}^{\Gamma}$ on a suitable Hurwitz space.

Dubrovin-Zhang constructed Frobenius structures on orbit spaces of affine Weyl groups. The resulting Frobenius manifold depends furthermore on a choice of a marked simple root of \mathfrak{g}_{Γ}.

Application: mirrors of DZ Frobenius manifolds

Two meaningful operations:
(1) replace $\Omega_{1}=\mathrm{d} \log \lambda \rightarrow \mathrm{d} \lambda$ (Dubrovin's almost duality)
(2) restrict to degenerate leaf $\mathfrak{C} \rightarrow 0$

Combining both: bona-fide (conformal, with flat-unit) FM structure $\mathcal{F}_{\text {Toda }}^{\Gamma}$ on a suitable Hurwitz space.

Dubrovin-Zhang constructed Frobenius structures on orbit spaces of affine Weyl groups. The resulting Frobenius manifold depends furthermore on a choice of a marked simple root of \mathfrak{g}_{Γ}.
[Dubrovin-Zhang '96-'97]

Theorem

For all simple Lie groups, we have
(1) $\mathcal{F}_{\text {Toda }}^{\Gamma} \simeq \mathrm{DZ}\left(\right.$ Weyl $\left._{\Gamma}\right)$
(2) choices of marked root in DZ correspond to choices of dual marked fundamental weights in $\mathcal{F}_{\text {Toda }}^{\Gamma}$
(3) for simply-laced Γ and canonical choice of roots, $\mathcal{F}_{\text {Toda }}^{\Gamma} \simeq Q H_{\text {orb }}\left(\mathbb{P}_{\Gamma}^{1}\right)$
[Rossi '08, Zaslow '92]
(4) the higher genus GW potential of \mathbb{P}_{Γ}^{1} coincides with the CEO higher genus free energies on $\mathcal{F}_{\text {Toda }}^{\Gamma}$.

Upon reversing Dubrovin's almost duality on the same leaf:

$$
\widehat{\mathcal{F}}_{\text {Toda }}^{\Gamma} \simeq Q H_{\text {orb }}\left(\left[\mathbb{C}^{2} / \Gamma\right]\right) \simeq Q H\left(\widehat{\mathbb{C}^{2} / \Gamma}\right)
$$

Part II: $\bigcirc \longrightarrow \mathcal{K}$

B-model for \mathcal{K}

The aim: Recall that for $\mathcal{K}=\bigcirc$, the full set of quantum invariants of the unknot were computed from the rational version of the topological recursion:

$$
\omega_{g, h}^{S^{3}, \bigcirc}=\mathrm{CEO}_{g, h}\left[\mathcal{S}_{\bigcirc}\right]
$$

Ideally, we'd like to have exactly the same for all knots.

B-model for \mathcal{K}

Four things we know/expect:

(1) spectral curves: 1-dimensional mirrors $\mathcal{S}_{\mathcal{K}}$ via the knot DGA and the augmentation polynomial of \mathcal{K} :

$$
N_{X}(\Pi)=1-X-Y+Q X Y \longrightarrow \operatorname{Aug}_{\mathcal{K}} \in \mathbb{Z}[X, Y, Q]
$$

[Aganagic-Vafa '12, AENV '13, Ng '04]
(C) topological recursion: open/closed B-model on conic bundles $z w=P(X, Y) \in \mathbb{C}^{2} \times\left(\mathbb{C}^{*}\right)^{2}$ solved by Eynard-Orantin recursion;
[BKMP '07, Dijkgraaf-Vafa '08, Gu-Jockers-Klemm-Soroush '14]
(0) the closed sector: $\mathrm{CEO}_{g, 0}\left[\mathcal{S}_{\mathcal{K}}\right]=\mathrm{GW}_{g}(X)$ regardless of \mathcal{K};
(4) symplectic invariance: if $\phi:\left(\left(\mathbb{C}^{\star}\right)^{2}, \omega\right) \rightarrow\left(\left(\mathbb{C}^{\star}\right)^{2}, \omega\right)$ is symplectic, then

$$
\mathrm{CEO}_{g, 0}[\mathcal{S}]=\mathrm{CEO}_{g, 0}\left[\phi^{*} \mathcal{S}\right]
$$

B-model for \mathcal{K}

Four things we know/expect:
(1) spectral curves: 1-dimensional mirrors $\mathcal{S}_{\mathcal{K}}$ via the knot DGA and the augmentation polynomial of \mathcal{K} :

$$
N_{X}(\Pi)=1-X-Y+Q X Y \longrightarrow \operatorname{Aug}_{\mathcal{K}} \in \mathbb{Z}[X, Y, Q]
$$

[Aganagic-Vafa '12, AENV '13, Ng '04]
(2) topological recursion: open/closed B-model on conic bundles $z w=P(X, Y) \in \mathbb{C}^{2} \times\left(\mathbb{C}^{*}\right)^{2}$ solved by Eynard-Orantin recursion;
(3) the closed sector: $\mathrm{CEO}_{g, 0}\left[\mathcal{S}_{\mathcal{K}}\right]=\mathrm{GW}_{g}(X)$ regardless of \mathcal{K};
(4) symplectic invariance: if $\phi:\left(\left(\mathbb{C}^{\star}\right)^{2}, \omega\right) \rightarrow\left(\left(\mathbb{C}^{\star}\right)^{2}, \omega\right)$ is symplectic, then

B-model for \mathcal{K}

Four things we know/expect:
(1) spectral curves: 1-dimensional mirrors $\mathcal{S}_{\mathcal{K}}$ via the knot DGA and the augmentation polynomial of \mathcal{K} :

$$
N_{X}(\Pi)=1-X-Y+Q X Y \longrightarrow \operatorname{Aug}_{\mathcal{K}} \in \mathbb{Z}[X, Y, Q]
$$

[Aganagic-Vafa '12, AENV '13, Ng '04]
(2) topological recursion: open/closed B-model on conic bundles $z w=P(X, Y) \in \mathbb{C}^{2} \times\left(\mathbb{C}^{*}\right)^{2}$ solved by Eynard-Orantin recursion; [BKMP '07, Dijkgraaf-Vafa '08, Gu-Jockers-Klemm-Soroush '14]
(8) the closed sector: $\mathrm{CEO}_{g, 0}\left[\mathcal{S}_{\mathcal{K}}\right]$
(4) symplectic invariance: if $\phi:\left(\left(\mathbb{C}^{\star}\right)^{2}, \omega\right) \rightarrow\left(\left(\mathbb{C}^{\star}\right)^{2}, \omega\right)$ is symplectic, then

B-model for \mathcal{K}

Four things we know/expect:
(1) spectral curves: 1-dimensional mirrors $\mathcal{S}_{\mathcal{K}}$ via the knot DGA and the augmentation polynomial of \mathcal{K} :

$$
N_{X}(\Pi)=1-X-Y+Q X Y \longrightarrow \operatorname{Aug}_{\mathcal{K}} \in \mathbb{Z}[X, Y, Q]
$$

[Aganagic-Vafa '12, AENV '13, Ng '04]
(2) topological recursion: open/closed B-model on conic bundles $z w=P(X, Y) \in \mathbb{C}^{2} \times\left(\mathbb{C}^{*}\right)^{2}$ solved by Eynard-Orantin recursion; [BKMP '07, Dijkgraaf-Vafa '08, Gu-Jockers-Klemm-Soroush '14]
(3) the closed sector: $\mathrm{CEO}_{g, 0}\left[\mathcal{S}_{\mathcal{K}}\right]=\mathrm{GW}_{g}(X)$ regardless of \mathcal{K};
[GJKS '14]
(4) symplectic invariance: if $\phi:\left(\left(\mathbb{C}^{\star}\right)^{2}, \omega\right) \rightarrow\left(\left(\mathbb{C}^{\star}\right)^{2}, \omega\right)$ is symplectic, then

B-model for \mathcal{K}

Four things we know/expect:
(1) spectral curves: 1-dimensional mirrors $\mathcal{S}_{\mathcal{K}}$ via the knot DGA and the augmentation polynomial of \mathcal{K} :

$$
N_{X}(\Pi)=1-X-Y+Q X Y \longrightarrow \operatorname{Aug}_{\mathcal{K}} \in \mathbb{Z}[X, Y, Q]
$$

[Aganagic-Vafa '12, AENV '13, Ng '04]
(2) topological recursion: open/closed B-model on conic bundles $z w=P(X, Y) \in \mathbb{C}^{2} \times\left(\mathbb{C}^{*}\right)^{2}$ solved by Eynard-Orantin recursion; [BKMP '07, Dijkgraaf-Vafa '08, Gu-Jockers-Klemm-Soroush '14]
(3) the closed sector: $\mathrm{CEO}_{g, 0}\left[\mathcal{S}_{\mathcal{K}}\right]=\mathrm{GW}_{g}(X)$ regardless of \mathcal{K};
[GJKS '14]
(4) symplectic invariance: if $\phi:\left(\left(\mathbb{C}^{\star}\right)^{2}, \omega\right) \rightarrow\left(\left(\mathbb{C}^{\star}\right)^{2}, \omega\right)$ is symplectic, then

$$
\mathrm{CEO}_{g, 0}[\mathcal{S}]=\mathrm{CEO}_{g, 0}\left[\phi^{*} \mathcal{S}\right]
$$

The Main Conjecture (crude form)

Piecing everything together...

Conjecture

There exists a set-theoretic correspondence $\mathcal{K} \rightarrow \phi_{\mathcal{K}} \in \operatorname{SCr}(2)$ (the symplectic Cremona group of the plane) such that

$$
\omega_{g, h}^{\mathcal{K}}=\mathrm{CEO}_{g, h}\left[\phi_{\mathcal{K}}^{*} N\left(\Pi_{x}\right)\right] \quad(\star)
$$

(cfr: mutations of LG potentials)
[Galkin-Usnich '10, Akhtar-Coates-Galkin-Kasprzyk '13]

The symplectic Cremona group of the plane

Let $\omega=\mathrm{d} \log X \wedge \log Y$ be the standard holomorphic symplectic form on the 2-torus.

$$
\mathbb{C P}^{2} \quad: \quad \operatorname{Cr}(2)=\operatorname{Aut}_{\mathbb{C}}(\mathbb{C}(X, Y))
$$

[Usnich '08, Blanc '10]

The symplectic Cremona group of the plane

Let $\omega=\mathrm{d} \log X \wedge \log Y$ be the standard holomorphic symplectic form on the 2-torus.

$$
\begin{array}{ccc}
\mathbb{C P}^{2} & : & \operatorname{Cr}(2)=\operatorname{Aut}_{\mathbb{C}}(\mathbb{C}(X, Y)) \\
\uparrow & V \\
\left(\left(\mathbb{C}^{*}\right)^{2}, \omega\right) & : & \operatorname{SCr}(2)=\left\{\phi \in \operatorname{Cr}(2) \mid \phi^{*} \omega=\omega\right\}
\end{array}
$$

$$
\left\{\left(\mathbb{C}^{\star}\right)^{2}, \mathrm{SL}_{2}(\mathbb{Z}), \mathbb{Z} / 5=\langle P\rangle\right\}
$$

The symplectic Cremona group of the plane

Let $\omega=\mathrm{d} \log X \wedge \log Y$ be the standard holomorphic symplectic form on the 2-torus.

$$
\begin{aligned}
& \begin{array}{c}
\mathbb{C P}^{2} \\
\uparrow
\end{array}: \\
&\left(\left(\mathbb{C}^{*}\right)^{2}, \omega\right)
\end{aligned} \quad \begin{gathered}
\operatorname{Cr}(2)=\operatorname{Aut}_{\mathbb{C}}(\mathbb{C}(X, Y)) \\
V \\
\left\{\left(\mathbb{C}^{\star}\right)^{2}, \operatorname{SL}_{2}(\mathbb{Z}), \mathbb{Z} / 5=\langle P\rangle\right\}
\end{gathered}
$$

$$
\mathrm{SL}_{2}(\mathbb{Z})=\left\langle C, \| C^{3}=I^{4}=1, I^{2} C=C I^{2}\right\rangle, P:(X, Y) \rightarrow\left(Y, \frac{Y}{X}+\frac{1}{X}\right)
$$

The symplectic Cremona group of the plane

Let $\omega=\mathrm{d} \log X \wedge \log Y$ be the standard holomorphic symplectic form on the 2-torus.

$\mathrm{SL}_{2}(\mathbb{Z})=\left\langle C, \| C^{3}=I^{4}=1, I^{2} C=C l^{2}\right\rangle, P:(X, Y) \rightarrow\left(Y, \frac{Y}{X}+\frac{1}{X}\right)$
$\operatorname{SCr}(2) /\left(\mathbb{C}^{\star}\right)^{2} \simeq\left\langle C, I, P \mid C^{3}=I^{4}=P^{5}=1, I^{2} C=C I^{2}, I=P C P\right\rangle$
[Usnich '08, Blanc '10]

The Main Conjecture (somewhat improved form)

Conjecture

There exists a set-theoretic correspondence $\mathcal{K} \rightarrow \phi_{\mathcal{K}} \in \operatorname{SCr}(2)$ (the symplectic Cremona group of the plane) such that

$$
\omega_{g, h}^{\mathcal{K}}=\mathrm{CEO}_{g, h}\left[\phi_{\mathcal{K}}^{*} N\left(\Pi_{x}\right)\right] \quad(\star)
$$

Two (necessary) tweaks:
(1) conformal $\phi_{\mathcal{K}}: \phi_{\mathcal{K}}^{*} \omega=\alpha_{\mathcal{K}} \omega, \alpha_{k} \in \mathbb{Z}$
(2) symmetry action on the open string sector: $\Delta: \mathcal{S}_{\mathcal{K}} \rightarrow \mathcal{S}_{\mathcal{K}}$ (cfr: Γ-correspondences for 3-manifolds)

What (\star) would be

$\operatorname{SCr}(2) \xrightarrow{\boldsymbol{f}_{1}} T \triangleq\left\{\phi \in \operatorname{PL}\left(S^{1}\right) \mid \operatorname{Disc}(\phi)\right.$ dyadic partition, slopes $\left.\in 2^{\mathbb{Z}}\right\}$
[Usnich '07]

What (\star) would be

$\operatorname{SCr}(2) \xrightarrow{\boldsymbol{f}_{1}} T \triangleq\left\{\phi \in \operatorname{PL}\left(S^{1}\right) \mid \operatorname{Disc}(\phi)\right.$ dyadic partition, slopes $\left.\in 2^{\mathbb{Z}}\right\}$
[Usnich '07]

What (\star) would be

$\operatorname{SCr}(2) \xrightarrow{f_{1}} T \xrightarrow{t_{3}}\left\{\left(G_{1}, G_{2}\right)\right.$ binary rooted trees, leaves \circlearrowright id'd $\}$

What (\star) would be

$\operatorname{SCr}(2) \xrightarrow{f_{1}} T \xrightarrow{f_{2}}\left\{\left(G_{1}, G_{2}\right)\right.$ binary rooted trees, leaves \circlearrowright id'd $\}$

What (\star) would be

$\operatorname{SCr}(2) \xrightarrow{f_{1}} T \xrightarrow{f_{2}}\left\{\left(G_{1}, G_{2}\right)\right.$ binary rooted trees, leaves \circlearrowright id'd $\}$

What (\star) would be

$\operatorname{SCr}(2) \xrightarrow{f_{1}} T \xrightarrow{t_{2}}\left\{\left(G_{1}, G_{2}\right)\right.$ binary rooted trees, leaves $\left.\circlearrowright i d^{\prime} d\right\}$

What (\star) would be

$\operatorname{SCr}(2) \xrightarrow{f_{1}} T \xrightarrow{f_{2}}\left\{\left(G_{1}, G_{2}\right)\right.$ binary rooted trees, leaves $\left.\circlearrowright i d^{\prime} d\right\}$

What (\star) would be

$\operatorname{SCr}(2) \xrightarrow{f_{1}} T \xrightarrow{\mathrm{f}_{2}}\left\{\left(G_{1}, G_{2}\right)\right.$ binary rooted trees, leaves $\left.\circlearrowright \mathrm{id}{ }^{\prime} \mathrm{d}\right\}$ $\xrightarrow[\rightarrow]{f_{3}}\{$ Knot diagrams $\} / \sim$ [Jones '16]

What (\star) would be

$\operatorname{SCr}(2) \xrightarrow{f_{1}} T \xrightarrow{f_{2}}\left\{\left(G_{1}, G_{2}\right)\right.$ binary rooted trees, leaves \circlearrowright id'd $\}$ $\xrightarrow[\rightarrow]{f_{3}}\{$ Knot diagrams $\} / \sim$

What (\star) would be

$$
\begin{gathered}
\operatorname{SCr}(2) \xrightarrow{f_{1}} T \xrightarrow{f_{2}}\left\{\left(G_{1}, G_{2}\right) \text { binary rooted trees, leaves } \circlearrowright \text { id'd }\right\} \\
\xrightarrow{f_{3}}\{\text { Knot diagrams }\} / \sim
\end{gathered}
$$

Ambiguities:

- Framing
- Unstable terms
- Classical terms

What (\star) would do

(1) $\mathrm{CEO}_{g, 0}\left[\mathcal{S}_{\mathcal{K}}\right]=\mathrm{GW}_{g}(X)$;
(2) $\phi \in \mathrm{SL}_{2}(\mathbb{Z})$: torus knots;
[AB-Eynard-Mariño '12]
(3) $\operatorname{Aug}_{\mathcal{K}}$ recovered from $\mathcal{S}_{\mathcal{K}}$;
[GJKS '14]
(4) canonical B-model annulus function;
© all-qenus, coloured HOMFLY-PT from rational TR;
(6) quantisation?
((refinement??)

What (\star) would do

(1) $\mathrm{CEO}_{g, 0}\left[\mathcal{S}_{\mathcal{K}}\right]=\mathrm{GW}_{g}(X)$;
(2) $\phi \in \mathrm{SL}_{2}(\mathbb{Z})$: torus knots;

[AB-Eynard-Mariño '12]

(3) $\operatorname{Aug}_{\mathcal{K}}$ recovered from $\mathcal{S}_{\mathcal{K}}$;
(4) canonical B-model annulus function;
© all-genus, coloured HOMFLY-PT from rational TR;
(6) quantisation?

- (refinement??)

What (\star) would do

(1) $\mathrm{CEO}_{g, 0}\left[\mathcal{S}_{\mathcal{K}}\right]=\mathrm{GW}_{g}(X)$;
(2) $\phi \in \mathrm{SL}_{2}(\mathbb{Z})$: torus knots;

[AB-Eynard-Mariño '12]

(3) $\operatorname{Aug}_{\mathcal{K}}$ recovered from $\mathcal{S}_{\mathcal{K}}$;
(4) canonical B-model annulus function;
© all-genus, coloured HOMFLY-PT from rational TR;
(6) quantisation?

- (refinement??)

What (\star) would do

(1) $\mathrm{CEO}_{g, 0}\left[\mathcal{S}_{\mathcal{K}}\right]=\mathrm{GW}_{g}(X)$;
(2) $\phi \in \mathrm{SL}_{2}(\mathbb{Z})$: torus knots;
[AB-Eynard-Mariño '12]
(3) $\operatorname{Aug}_{\mathcal{K}}$ recovered from $\mathcal{S}_{\mathcal{K}}$;
(4) canonical B-model annulus function;
© all-genus, coloured HOMFLY-PT from rational TR;
© quantisation?
(refinement??)

What (\star) would do

(1) $\mathrm{CEO}_{g, 0}\left[\mathcal{S}_{\mathcal{K}}\right]=\mathrm{GW}_{g}(X)$;
(2) $\phi \in \mathrm{SL}_{2}(\mathbb{Z})$: torus knots;
[AB-Eynard-Mariño '12]
(3) $\operatorname{Aug}_{\mathcal{K}}$ recovered from $\mathcal{S}_{\mathcal{K}}$;
(4) canonical B-model annulus function;
© all-genus, coloured HOMFLY-PT from rational TR;
© quantisation?
(refinement??)

What (\star) would do

(1) $\mathrm{CEO}_{g, 0}\left[\mathcal{S}_{\mathcal{K}}\right]=\mathrm{GW}_{g}(X)$;
(2) $\phi \in \mathrm{SL}_{2}(\mathbb{Z})$: torus knots;
[AB-Eynard-Mariño '12]
(8) $\operatorname{Aug}_{\mathcal{K}}$ recovered from $\mathcal{S}_{\mathcal{K}}$;
[GJKS '14]
(4) canonical B-model annulus function;
(6) all-aenus, coloured HOMFLY-PT from rational TR;
(8) quantisation?
(refinement??)

What (\star) would do

(1) $\mathrm{CEO}_{g, 0}\left[\mathcal{S}_{\mathcal{K}}\right]=\mathrm{GW}_{g}(X)$;
(2) $\phi \in \mathrm{SL}_{2}(\mathbb{Z})$: torus knots;
[AB-Eynard-Mariño '12]
(8) $\operatorname{Aug}_{\mathcal{K}}$ recovered from $\mathcal{S}_{\mathcal{K}}$;
[GJKS '14]
(4) canonical B-model annulus function;
(6) all-aenus, coloured HOMFLY-PT from rational TR;
(8) quantisation?
(refinement??)

What (\star) would do

(1) $\mathrm{CEO}_{g, 0}\left[\mathcal{S}_{\mathcal{K}}\right]=\mathrm{GW}_{g}(X)$;
(2) $\phi \in \mathrm{SL}_{2}(\mathbb{Z})$: torus knots;
[AB-Eynard-Mariño '12]
(8) $\operatorname{Aug}_{\mathcal{K}}$ recovered from $\mathcal{S}_{\mathcal{K}}$;
[GJKS '14]
(4) canonical B-model annulus function;
(5) all-genus, coloured HOMFLY-PT from rational TR;
(6) quantisation?
© (refinement??)

What (\star) would do

(1) $\mathrm{CEO}_{g, 0}\left[\mathcal{S}_{\mathcal{K}}\right]=\mathrm{GW}_{g}(X)$;
(2) $\phi \in \mathrm{SL}_{2}(\mathbb{Z})$: torus knots;
[AB-Eynard-Mariño '12]
(8) $\operatorname{Aug}_{\mathcal{K}}$ recovered from $\mathcal{S}_{\mathcal{K}}$;
[GJKS '14]
(4) canonical B-model annulus function;
(5) all-genus, coloured HOMFLY-PT from rational TR;
(6) quantisation?
© (refinement??)

What (\star) would do

(1) $\mathrm{CEO}_{g, 0}\left[\mathcal{S}_{\mathcal{K}}\right]=\mathrm{GW}_{g}(X)$;
(2) $\phi \in \mathrm{SL}_{2}(\mathbb{Z})$: torus knots;
[AB-Eynard-Mariño '12]
(8) $\operatorname{Aug}_{\mathcal{K}}$ recovered from $\mathcal{S}_{\mathcal{K}}$;
(4) canonical B-model annulus function;
(5) all-genus, coloured HOMFLY-PT from rational TR;
© quantisation?
((refinement??)

What (\star) would do

(1) $\mathrm{CEO}_{g, 0}\left[\mathcal{S}_{\mathcal{K}}\right]=\mathrm{GW}_{g}(X)$;
(2) $\phi \in \mathrm{SL}_{2}(\mathbb{Z})$: torus knots;
[AB-Eynard-Mariño '12]
(8) $\operatorname{Aug}_{\mathcal{K}}$ recovered from $\mathcal{S}_{\mathcal{K}}$;
(4) canonical B-model annulus function;
(5) all-genus, coloured HOMFLY-PT from rational TR;
© quantisation?
((refinement??)

What (\star) would do

(1) $\mathrm{CEO}_{g, 0}\left[\mathcal{S}_{\mathcal{K}}\right]=\mathrm{GW}_{g}(X)$;
(2) $\phi \in \mathrm{SL}_{2}(\mathbb{Z})$: torus knots;
[AB-Eynard-Mariño '12]
(8) $\operatorname{Aug}_{\mathcal{K}}$ recovered from $\mathcal{S}_{\mathcal{K}}$;
(4) canonical B-model annulus function;
(5) all-genus, coloured HOMFLY-PT from rational TR;
(6) quantisation?
(0) (refinement??)

What (\star) would do

(1) $\mathrm{CEO}_{g, 0}\left[\mathcal{S}_{\mathcal{K}}\right]=\mathrm{GW}_{g}(X)$;
(2) $\phi \in \mathrm{SL}_{2}(\mathbb{Z})$: torus knots;
[AB-Eynard-Mariño '12]
(8) $\operatorname{Aug}_{\mathcal{K}}$ recovered from $\mathcal{S}_{\mathcal{K}}$;
(4) canonical B-model annulus function;
(5) all-genus, coloured HOMFLY-PT from rational TR;
(6) quantisation?
(0) (refinement??)

What (\star) would do

(1) $\mathrm{CEO}_{g, 0}\left[\mathcal{S}_{\mathcal{K}}\right]=\mathrm{GW}_{g}(X)$;
(2) $\phi \in \mathrm{SL}_{2}(\mathbb{Z})$: torus knots;
[AB-Eynard-Mariño '12]
(8) $\operatorname{Aug}_{\mathcal{K}}$ recovered from $\mathcal{S}_{\mathcal{K}}$;
(4) canonical B-model annulus function;
(5) all-genus, coloured HOMFLY-PT from rational TR;
(6) quantisation?
(T) (refinement??)

